Human-in-the-Loop Machine Learning for the Treatment of Pancreatic Cancer

被引:1
|
作者
Mosqueira-Rey, Eduardo [1 ]
Perez-Sanchez, Alberto [1 ]
Hernandez-Pereira, Elena [1 ]
Alonso-Rios, David [1 ]
Bobes-Bascaran, Jose [1 ]
Fernandez-Leal, Angel [1 ]
Moret-Bonillo, Vicente [1 ]
Vidal-Insua, Yolanda [2 ]
Vazquez-Rivera, Francisca [2 ]
机构
[1] Univ A Coruna, CITIC, La Coruna, Spain
[2] Complejo Hosp CHUS, Santiago De Compostela, Spain
关键词
Human-in-the-Loop Machine Learning; Active Learning; Interactive Machine Learning; Pancreatic Cancer; Generative Adversarial Network;
D O I
10.1109/IJCNN54540.2023.10191456
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human-in-the-Loop Machine Learning (HITL-ML) is a set of techniques that attempt to actively introduce experts into the learning loop of machine learning (ML) models to improve the learning process. In this paper we present a HITL-ML strategy for the treatment of pancreatic cancer in which a classifier should decide whether a chemotherapy treatment is suitable or not for the patient. The contribution of this work is, first, to demonstrate that involving human experts in the learning process improves the learning capacity of the model; second, to develop a relatively novel Interactive Machine Learning (IML) approach in which unstructured feedback obtained from the experts is used to optimize the synthetic cases generator implemented by a Generative Adversarial Network (GAN). This GAN is used to augment the dataset and to improve the generalization capabilities of the model. Finally, the inclusion of humans in the learning process also poses new challenges, e.g., aspects related to Human-Computer Interaction (HCI), normally irrelevant in ML systems, are now of great importance and can condition the success of a HITL approach. This paper also discusses the approach taken to address these challenges.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Human-in-the-Loop Machine Learning to Increase Video Accessibility for Visually Impaired and Blind Users
    Yuksel, Beste F.
    Fazli, Pooyan
    Mathur, Umang
    Bisht, Vaishali
    Kim, Soo Jung
    Lee, Joshua Junhee
    Jin, Seung Jung
    Siu, Yue-Ting
    Miele, Joshua A.
    Yoon, Ilmi
    PROCEEDINGS OF THE 2020 ACM DESIGNING INTERACTIVE SYSTEMS CONFERENCE (DIS 2020), 2020, : 47 - 60
  • [32] Addressing the data bottleneck in medical deep learning models using a human-in-the-loop machine learning approach
    Mosqueira-Rey, Eduardo
    Hernandez-Pereira, Elena
    Bobes-Bascaran, Jose
    Alonso-Rios, David
    Perez-Sanchez, Alberto
    Fernandez-Leal, Angel
    Moret-Bonillo, Vicente
    Vidal-Insua, Yolanda
    Vazquez-Rivera, Francisca
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (05): : 2597 - 2616
  • [33] Addressing the data bottleneck in medical deep learning models using a human-in-the-loop machine learning approach
    Eduardo Mosqueira-Rey
    Elena Hernández-Pereira
    José Bobes-Bascarán
    David Alonso-Ríos
    Alberto Pérez-Sánchez
    Ángel Fernández-Leal
    Vicente Moret-Bonillo
    Yolanda Vidal-Ínsua
    Francisca Vázquez-Rivera
    Neural Computing and Applications, 2024, 36 : 2597 - 2616
  • [34] HEIDL: Learning Linguistic Expressions with Deep Learning and Human-in-the-Loop
    Yang, Yiwei
    Kandogan, Eser
    Li, Yunyao
    Lasecki, Walter S.
    Sen, Prithviraj
    PROCEEDINGS OF THE 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, (ACL 2019), 2019, : 135 - 140
  • [35] Combining human intelligence and machine learning for fact-checking: Towards a hybrid human-in-the-loop framework
    La Barbera, David
    Roitero, Kevin
    Mizzaro, Stefano
    INTELLIGENZA ARTIFICIALE, 2023, 17 (02) : 163 - 172
  • [36] Digitally Diagnosing Multiple Developmental Delays Using Crowdsourcing Fused With Machine Learning: Protocol for a Human-in-the-Loop Machine Learning Study
    Jaiswal, Aditi
    Kruiper, Ruben
    Rasool, Abdur
    Nandkeolyar, Aayush
    Wall, Dennis P.
    Washington, Peter
    JMIR RESEARCH PROTOCOLS, 2024, 13
  • [37] Human-Machine Trust and Calibration Based on Human-in-the-Loop Experiment
    Wang, Yifan
    Guo, Jianbin
    Zeng, Shengkui
    Mao, Qirui
    Lu, Zhenping
    Wang, Zengkai
    2022 4TH INTERNATIONAL CONFERENCE ON SYSTEM RELIABILITY AND SAFETY ENGINEERING, SRSE, 2022, : 476 - 481
  • [38] Artificial Intelligence in Educational Data Mining and Human-in-the-Loop Machine Learning and Machine Teaching: Analysis of Scientific Knowledge
    Lopez-Meneses, Eloy
    Lopez-Catalan, Luis
    Pelicano-Piris, Noelia
    Mellado-Moreno, Pedro C.
    APPLIED SCIENCES-BASEL, 2025, 15 (02):
  • [39] Precise atom-to-atom mapping for organic reactions via human-in-the-loop machine learning
    Chen S.
    An S.
    Babazade R.
    Jung Y.
    Nature Communications, 15 (1)
  • [40] Human-in-the-Loop Predictive Analytics Using Statistical Learning
    Ganesan, Anusha
    Paul, Anand
    Nagabushnam, Ganesan
    Gul, Malik Junaid Jami
    JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021