Naturally reductive homogeneous (α, β) spaces

被引:0
|
作者
Zhang, Shaoxiang [1 ]
Yan, Zaili [2 ]
Deng, Shaoqiang [3 ,4 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Ningbo Univ, Dept Math, Ningbo 315211, Peoples R China
[3] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[4] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
来源
PUBLICATIONES MATHEMATICAE DEBRECEN | 2023年 / 102卷 / 3-4期
关键词
invariant; (alpha; beta)-metric; naturally reductive space; flag curvature;
D O I
10.5486/PMD.2023.9438
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study naturally reductive homogeneous Finsler spaces. In the literature, there are two versions of the definition for naturally reductive Finsler spaces. Our first main result shows that the two versions are equivalent. Then we study naturally reductive (alpha, beta)-metrics and give an explicit formula for flag curvature of naturally reductive (alpha, beta)-metrics. Finally, we compute the flag curvature of several important (alpha, beta)-metrics, including Randers, Berwald square, Matsumoto and Kropina metrics.
引用
收藏
页码:415 / 427
页数:13
相关论文
共 50 条
  • [31] Jacobi relations on naturally reductive spaces
    Jentsch, Tillmann
    Weingart, Gregor
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2021, 59 (01) : 109 - 156
  • [32] A NEW CONSTRUCTION OF NATURALLY REDUCTIVE SPACES
    Storm, Reinier
    TRANSFORMATION GROUPS, 2018, 23 (02) : 527 - 553
  • [33] A NEW CONSTRUCTION OF NATURALLY REDUCTIVE SPACES
    REINIER STORM
    Transformation Groups, 2018, 23 : 527 - 553
  • [34] NATURALLY REDUCTIVE HOMOGENEOUS RIEMANNIAN-MANIFOLDS
    GORDON, CS
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1985, 37 (03): : 467 - 487
  • [35] Naturally Reductive Homogeneous Space with an Invariant (α, β)-Metric
    Gauree Shanker
    Kirandeep Kaur
    Lobachevskii Journal of Mathematics, 2019, 40 : 210 - 218
  • [36] Weak symmetry in naturally reductive homogeneous nilmanifolds
    Lauret, J
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (01) : 215 - 224
  • [37] Naturally Reductive Homogeneous Space with an Invariant (α, β)-Metric
    Shanker, Gauree
    Kaur, Kirandeep
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2019, 40 (02) : 210 - 218
  • [38] Proper actions on reductive homogeneous spaces
    Benoist, Y
    ANNALS OF MATHEMATICS, 1996, 144 (02) : 315 - 347
  • [39] THE CONNECTION ALGEBRA OF REDUCTIVE HOMOGENEOUS SPACES
    Stava, Jonatan
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2025, 12 (01): : 23 - 47
  • [40] Isotropic Jacobi fields on naturally reductive spaces
    González-Dávila, JC
    Salazar, RO
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2005, 66 (1-2): : 41 - 61