Naturally reductive homogeneous (α, β) spaces

被引:0
|
作者
Zhang, Shaoxiang [1 ]
Yan, Zaili [2 ]
Deng, Shaoqiang [3 ,4 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Ningbo Univ, Dept Math, Ningbo 315211, Peoples R China
[3] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[4] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
来源
PUBLICATIONES MATHEMATICAE DEBRECEN | 2023年 / 102卷 / 3-4期
关键词
invariant; (alpha; beta)-metric; naturally reductive space; flag curvature;
D O I
10.5486/PMD.2023.9438
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study naturally reductive homogeneous Finsler spaces. In the literature, there are two versions of the definition for naturally reductive Finsler spaces. Our first main result shows that the two versions are equivalent. Then we study naturally reductive (alpha, beta)-metrics and give an explicit formula for flag curvature of naturally reductive (alpha, beta)-metrics. Finally, we compute the flag curvature of several important (alpha, beta)-metrics, including Randers, Berwald square, Matsumoto and Kropina metrics.
引用
收藏
页码:415 / 427
页数:13
相关论文
共 50 条