Estimation and Inference on Time-Varying FAVAR Models

被引:2
作者
Fu, Zhonghao [1 ,2 ]
Su, Liangjun [3 ]
Wang, Xia [4 ]
机构
[1] Fudan Univ, Sch Econ, Shanghai, Peoples R China
[2] Shanghai Inst Int Finance & Econ, Shanghai, Peoples R China
[3] Tsinghua Univ, Sch Econ & Management, Beijing, Peoples R China
[4] Renmin Univ China, Sch Econ, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
FAVAR; Local smoothing; Specification test; Structural change; Time-varying modelling; DYNAMIC FACTOR MODELS; PANEL-DATA MODELS; STRUCTURAL-CHANGES; SERIES MODELS; REGRESSION; NUMBER; IDENTIFICATION; WORLD;
D O I
10.1080/07350015.2023.2203726
中图分类号
F [经济];
学科分类号
02 ;
摘要
We introduce a time-varying (TV) factor-augmented vector autoregressive (FAVAR) model to capture the TV behavior in the factor loadings and the VAR coefficients. To consistently estimate the TV parameters, we first obtain the unobserved common factors via the local principal component analysis (PCA) and then estimate the TV-FAVAR model via a local smoothing approach. The limiting distribution of the proposed estimators is established. To gauge possible sources of TV features in the FAVAR model, we propose three L-2-distance-based test statistics and study their asymptotic properties under the null and local alternatives. Simulation studies demonstrate the excellent finite sample performance of the proposed estimators and tests. In an empirical application to the U.S. macroeconomic dataset, we document overwhelming evidence of structural changes in the FAVAR model and show that the TV-FAVAR model outperforms the conventional time-invariant FAVAR model in predicting certain key macroeconomic series.
引用
收藏
页码:533 / 547
页数:15
相关论文
共 53 条
[1]   Inferential theory for factor models of large dimensions. [J].
Bai, J .
ECONOMETRICA, 2003, 71 (01) :135-171
[2]   Estimating and testing linear models with multiple structural changes [J].
Bai, JS ;
Perron, P .
ECONOMETRICA, 1998, 66 (01) :47-78
[3]   Determining the number of factors in approximate factor models [J].
Bai, JS ;
Ng, S .
ECONOMETRICA, 2002, 70 (01) :191-221
[4]   Confidence intervals for diffusion index forecasts and inference for factor-augmented regressions [J].
Bai, Jushan ;
Ng, Serena .
ECONOMETRICA, 2006, 74 (04) :1133-1150
[5]   Estimation and Inference of FAVAR Models [J].
Bai, Jushan ;
Li, Kunpeng ;
Lu, Lina .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2016, 34 (04) :620-641
[6]   Estimating and testing high dimensional factor models with multiple structural changes [J].
Baltagi, Badi H. ;
Kao, Chihwa ;
Wang, Fa .
JOURNAL OF ECONOMETRICS, 2021, 220 (02) :349-365
[7]  
Banerjee A, 2008, FRONT ECON GLOBAL, V3, P149, DOI 10.1016/S1574-8715(07)00204-7
[8]   Time-varying general dynamic factor models and the measurement of financial connectedness [J].
Barigozzi, Matteo ;
Hallin, Marc ;
Soccorsi, Stefano ;
von Sachs, Rainer .
JOURNAL OF ECONOMETRICS, 2021, 222 (01) :324-343
[9]   Consistent factor estimation in dynamic factor models with structural instability [J].
Bates, Brandon J. ;
Plagborg-Moller, Mikkel ;
Stock, James H. ;
Watson, Mark W. .
JOURNAL OF ECONOMETRICS, 2013, 177 (02) :289-304
[10]   Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach [J].
Bernanke, BS ;
Boivin, J ;
Eliasz, P .
QUARTERLY JOURNAL OF ECONOMICS, 2005, 120 (01) :387-422