Blue Photons from Broad-Spectrum LEDs Control Growth, Morphology, and Coloration of Indoor Hydroponic Red-Leaf Lettuce

被引:3
|
作者
Meng, Qingwu [1 ]
Runkle, Erik S. [2 ]
机构
[1] Univ Delaware, Dept Plant & Soil Sci, 531 South Coll Ave, Newark, DE 19716 USA
[2] Michigan State Univ, Dept Hort, 1066 Bogue St, E Lansing, MI 48824 USA
来源
PLANTS-BASEL | 2023年 / 12卷 / 05期
基金
美国食品与农业研究所;
关键词
indoor vertical farming; green light; red light; sole-source lighting; white light; LIGHT-EMITTING-DIODES; PLANT-GROWTH; GREEN LIGHT; WHITE;
D O I
10.3390/plants12051127
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
For indoor crop production, blue + red light-emitting diodes (LEDs) have high photosynthetic efficacy but create pink or purple hues unsuitable for workers to inspect crops. Adding green light to blue + red light forms a broad spectrum (white light), which is created by: phosphor-converted blue LEDs that cast photons with longer wavelengths, or a combination of blue, green, and red LEDs. A broad spectrum typically has a lower energy efficiency than dichromatic blue + red light but increases color rendering and creates a visually pleasing work environment. Lettuce growth depends on the interactions of blue and green light, but it is not clear how phosphor-converted broad spectra, with or without supplemental blue and red light, influence crop growth and quality. We grew red-leaf lettuce 'Rouxai' in an indoor deep-flow hydroponic system at 22 degrees C air temperature and ambient CO2. Upon germination, plants received six LED treatments delivering different blue fractions (from 7% to 35%) but the same total photon flux density (400 to 799 nm) of 180 mu mol center dot m(-2)center dot s(-1) under a 20 h photoperiod. The six LED treatments were: (1) warm white (WW180); (2) mint white (MW180); (3) MW100 + blue(10) + red(70); (4) blue(20) + green(60) + red(100); (5) MW100 + blue(50) + red(30); and (6) blue(60) + green(60) + red(60). Subscripts denote photon flux densities in mu mol center dot m(-2)center dot s(-1). Treatments 3 and 4 had similar blue, green, and red photon flux densities, as did treatments 5 and 6. At the harvest of mature plants, lettuce biomass, morphology, and color were similar under WW180 and MW180, which had different green and red fractions but similar blue fractions. As the blue fraction in broad spectra increased, shoot fresh mass, shoot dry mass, leaf number, leaf size, and plant diameter generally decreased and red leaf coloration intensified. Compared to blue + green + red LEDs, white LEDs supplemented with blue + red LEDs had similar effects on lettuce when they delivered similar blue, green, and red photon flux densities. We conclude that the blue photon flux density in broad spectra predominantly controls lettuce biomass, morphology, and coloration.
引用
收藏
页数:13
相关论文
共 11 条