Weak asymptotic solution of one dimensional zero pressure dynamics system in the quarter plane

被引:3
作者
Joseph, Kayyunnapara Divya [1 ,2 ]
机构
[1] Visvesvaraya Technol Univ, Belgaum, India
[2] Visvesvaraya Technol Univ, Math, Belgaum, India
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2023年 / 103卷 / 08期
关键词
Queueing theory;
D O I
10.1002/zamm.202100483
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a system of equations which appear in the modelling of many physical phenomena. Initially this system appeared in description of the large scale structure formation. Recently it is derived as a second order queueing model. We construct weakly asymptotic solutions of the initial boundary value problem for the system and interaction of waves in the quarter plane {(x,t):x>0,t>0}$\lbrace (x,t): x>0,t>0\rbrace$ with boundary Riemann solution centered at (0,0) and Riemann solution centered at a point (x0,0),x0>0$(x_0,0), x_0>0$.
引用
收藏
页数:20
相关论文
共 19 条
[1]  
[Anonymous], 2003, Amer. Math. Soc. Transl.
[2]  
[Anonymous], 1979, Comm. Partial Differential Equations, DOI DOI 10.1080/03605307908820117
[3]  
[Anonymous], 1984, QUANT ELECT
[4]   Kinetic and fluid model hierarchies for supply chains [J].
Armbruster, D ;
Marthaler, D ;
Ringhofer, C .
MULTISCALE MODELING & SIMULATION, 2003, 2 (01) :43-61
[5]   KINETIC MODELS AND INTRINSIC TIMESCALES: SIMULATION COMPARISON FOR A 2ND ORDER QUEUEING MODEL [J].
Armbruster, Dieter ;
Wienke, Matthew .
KINETIC AND RELATED MODELS, 2019, 12 (01) :177-193
[6]   Dynamics of propagation and interaction of δ-shock waves in conservation law systems [J].
Danilov, VG ;
Shelkovich, VM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 211 (02) :333-381
[7]  
Floch P. L., 1990, Nonlinear Evolution Equations That Change Type, V27, P126
[8]   DATA-FITTED SECOND-ORDER MACROSCOPIC PRODUCTION MODELS [J].
Forestier-Coste, L. ;
Goettlich, S. ;
Herty, M. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (03) :999-1014
[9]  
Friedman A., 1983, Partial Differential Equations of Parabolic Type
[10]   Large-scale structure of the Universe. The Zeldovich approximation and the adhesion model [J].
Gurbatov, S. N. ;
Saichev, A. I. ;
Shandarin, S. F. .
PHYSICS-USPEKHI, 2012, 55 (03) :223-249