Block Copolymers in 3D/4D Printing: Advances and Applications as Biomaterials

被引:9
|
作者
Politakos, Nikolaos [1 ]
机构
[1] Univ Basque Country, UPV EHU, Fac Chem, Appl Chem Dept,POLYMAT, Paseo Manuel Lardizabal 3, Donostia San Sebastian 20018, Spain
关键词
block copolymers; 3D printing; 4D printing; biomaterials; scaffolds; tissue engineering; CELL-TYPES; 3D; HYDROGELS; POLYMERS; INKS; STEREOLITHOGRAPHY; TEMPERATURE; FABRICATION; SCAFFOLDS; SYSTEM;
D O I
10.3390/polym15020322
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
3D printing is a manufacturing technique in constant evolution. Day by day, new materials and methods are discovered, making 3D printing continually develop. 3D printers are also evolving, giving us objects with better resolution, faster, and in mass production. One of the areas in 3D printing that has excellent potential is 4D printing. It is a technique involving materials that can react to an environmental stimulus (pH, heat, magnetism, humidity, electricity, and light), causing an alteration in their physical or chemical state and performing another function. Lately, 3D/4D printing has been increasingly used for fabricating materials aiming at drug delivery, scaffolds, bioinks, tissue engineering (soft and hard), synthetic organs, and even printed cells. The majority of the materials used in 3D printing are polymeric. These materials can be of natural origin or synthetic ones of different architectures and combinations. The use of block copolymers can combine the exemplary properties of both blocks to have better mechanics, processability, biocompatibility, and possible stimulus behavior via tunable structures. This review has gathered fundamental aspects of 3D/4D printing for biomaterials, and it shows the advances and applications of block copolymers in the field of biomaterials over the last years.
引用
收藏
页数:31
相关论文
共 50 条
  • [31] APPLICATIONS OF 3D AND 4D NMR
    GRONENBORN, A
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1991, 201 : 179 - CHED
  • [32] 3D and 4D Printing in Biomedical Applications: Process Engineering and Additive Manufacturing
    不详
    JOURNAL OF PRINT AND MEDIA TECHNOLOGY RESEARCH, 2019, 8 (04): : 246 - 246
  • [33] Metallic gels for conductive 3D and 4D printing
    Xing, Ruizhe
    Yang, Jiayi
    Zhang, Dongguang
    Gong, Wei
    V. Neumann, Taylor
    Wang, Meixiang
    Huang, Renliang
    Kong, Jie
    Qi, Wei
    Dickey, Michael D.
    MATTER, 2023, 6 (07) : 2248 - 2262
  • [34] Smart polymers and nanocomposites for 3D and 4D printing
    Falahati, Mojtaba
    Ahmadvand, Parvaneh
    Safaee, Shahriar
    Chang, Yu-Chung
    Lyu, Zhaoyuan
    Chen, Roland
    Li, Lei
    Lin, Yuehe
    MATERIALS TODAY, 2020, 40 : 215 - 245
  • [35] Multimaterial 3D printing for shape changing devices and 4D printing
    Ding, Zhen
    Yuan, Chao
    Dunn, Martin
    Qi, H. Jerry
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [36] Advanced Materials in 3D/4D Printing Technology
    Pan, Houwen Matthew
    POLYMERS, 2022, 14 (16)
  • [37] 3D/4D Printing of Polyurethanes by Vat Photopolymerization
    Mauriello, Jessica
    Maury, Romain
    Guillaneuf, Yohann
    Gigmes, Didier
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (23)
  • [38] Translational Aspects of 3D and 4D Printing and Bioprinting
    Taylor, Scott
    Mueller, Eva
    Jones, Lamont R.
    Makela, Ashley V.
    Ashammakhi, Nureddin
    ADVANCED HEALTHCARE MATERIALS, 2024, 13 (27)
  • [39] 3D and 4D printing: From innovation to evolution
    Mallakpour, Shadpour
    Tabesh, Farbod
    Hussain, Chaudhery Mustansar
    Advances in Colloid and Interface Science, 2021, 294
  • [40] 3D and 4D printing: From innovation to evolution
    Mallakpour, Shadpour
    Tabesh, Farbod
    Hussain, Chaudhery Mustansar
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2021, 294