First Module Cohomology Group of Induced Semigroup Algebras

被引:1
作者
Miri, Mohammad Reza [1 ]
Nasrabadi, Ebrahim [1 ]
Kazemi, Kianoush [1 ]
机构
[1] Univ Birjand, Fac Math Sci & Stat, Dept Math, POB 414, Birjand 9717851367, Iran
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2023年 / 41卷
关键词
Semigroup; induced semigroup; module cohomology group; weak module amenability; AMENABILITY;
D O I
10.5269/bspm.51414
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a discrete semigroup and T be a left multiplier on S. A new product on S defined by T creates a new induced semigroup ST. In this paper, we show that if T is bijective, then the first module cohomology groups H1 l1(E)(l1(S), l infinity(S)) and H1l1(ET )(l1(ST ), l infinity(ST )) are equal, where E and ET are sets of idempotent elements in S and ST, respectively. Which in particular means that l1(S) is weak l1(E)-module amenable if and only if l1(ST) is weak l1(ET )-module amenable. Finally, by giving an example, we show that the bijectivity of T, is necessary.
引用
收藏
页码:13 / 13
页数:1
相关论文
共 9 条