Designed strategies of nanofiltration technology for Mg2+/Li+ separation from salt-lake brine: A comprehensive review

被引:123
|
作者
Zhang, Tong [1 ]
Zheng, Wenjia [1 ]
Wang, Qiaoying [1 ]
Wu, Zhichao [1 ]
Wang, Zhiwei [1 ]
机构
[1] Tongji Univ, Shanghai Inst Pollut Control & Ecol Secur, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China
关键词
Salt-lake brine; Lithium extraction; Nanofiltration; Mg2+; Li plus separation; Donnan effect; SOLVENT-EXTRACTION SYSTEM; RECOVERING LITHIUM; MEMBRANE DISTILLATION; RATIO BRINES; MAGNESIUM; REMOVAL; ELECTRODIALYSIS; TEMPERATURE; PERFORMANCE; WATER;
D O I
10.1016/j.desal.2022.116205
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The worldwide demand for lithium has greatly increased with the rapid development of industries especially for lithium-ion battery. As the global potential resource, salt-lake brine has extensive value for Li exploitation. However, the actual salt-lake brine with high mass ratio of Mg2+ and Li+ (MLR) further restricts Li extraction via the conventional technologies. Nanofiltration (NF) exhibits the outstanding potential for Mg2+/Li+ separation, owing to its selective separation mechanism. Extensive investigations and industrial applications involve nega-tively charged commercial NF membrane in lithium extraction. Recently, novel positively charged NF mem-branes have been proposed to specifically separate Mg2+ and Li+ ions with the similar hydrate ion radius. The present work reviews the current Li extraction process based on commercial NF membrane, and highlights positively charged NF membranes for Mg2+/Li+ separation inspired by the separation mechanism of Donnan effect. The strategies of introducing functional groups, specific nanopores and nanochannels into membrane to enhance the separation performance are presented. Finally, the main operating parameters associated with Mg2+/Li+ separation process are also discussed. This review is expected to provide a new insight in prospective Mg2+/Li+ separation from salt-lake brine with high MLR.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Separation of magnesium from lithium in salt-lake brine through struvite precipitation
    Zhang, Ye
    Xu, Rui
    Wang, Li
    Sun, Wei
    MINERALS ENGINEERING, 2022, 180
  • [22] Crown ether-functionalized nanofiltration membranes with high ions selectivity for Li+/Mg2+ separation
    Jiang, Chi
    Bai, Shibo
    Li, Jiawang
    Wang, Ming
    Zhou, Yan
    Hou, Yingfei
    JOURNAL OF MEMBRANE SCIENCE, 2025, 714
  • [23] Janus charged nanofiltration membranes modified with amino polymer brush for enhanced Mg2+/Li+ separation
    Hu, Dan
    Pan, Shiqi
    Chen, Yingying
    Wang, Yu
    Ma, Ruiqi
    Liu, Chunmiao
    Feng, Xudong
    Lin, Yakai
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 361
  • [24] High-permeance Mg2+/Li+ separation nanofiltration membranes intensified by quadruple imidazolium salts
    Liu, Xufei
    Feng, Yuxi
    Ni, Yunxia
    Peng, Huawen
    Li, Shaoping
    Zhao, Qiang
    JOURNAL OF MEMBRANE SCIENCE, 2023, 667
  • [25] Enhanced Mg2+/Li+ separation by nanofiltration membrane through surface modification using spirocyclic diamine
    Guo, Xiang
    Zhao, Bin
    Wang, Liang
    Zhang, Zhaohui
    Li, Jixiang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 364
  • [26] Intercalation of small molecules in the selective layer of polyamide nanofiltration membranes facilitates the separation of Mg2+/Li+
    Li, Junwei
    Fang, Long
    Xu, Daliang
    Zhang, Xi
    Jiang, Lei
    Zhu, Qingjuan
    Chen, Qin
    Jin, Pengrui
    Volodine, Alexander
    Dewil, Raf
    Gui, Xiahui
    Gao, Qieyuan
    Van der Bruggen, Bart
    CHEMICAL ENGINEERING JOURNAL, 2024, 487
  • [27] Incorporation of crown ether into PEI-polyamide nanofiltration membrane for efficient Mg2+/Li+ separation
    Liu, Shuyang
    Wang, Mingxia
    Dong, Linfang
    Cui, Zhenyu
    He, Benqiao
    Li, Jianxin
    Yan, Feng
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 360
  • [28] Enhancing Mg2+/Li+ separation performance of nanofiltration membranes through polyelectrolyte modulation and surface modification
    Wang, Jingjun
    Zhang, Hao
    Tian, Rukang
    Shen, Huiyan
    Li, Wei-Hua
    Wang, Yunkun
    Journal of Membrane Science, 2024, 701
  • [29] Enhancing Mg2+/Li+ separation performance of nanofiltration membranes through polyelectrolyte modulation and surface modification
    Wang, Jingjun
    Zhang, Hao
    Tian, Rukang
    Shen, Huiyan
    Li, Wei -Hua
    Wang, Yunkun
    JOURNAL OF MEMBRANE SCIENCE, 2024, 701
  • [30] Effect of quaternary ammonium salt structures on Mg2+/Li+ separation performance of modified membranes
    Wang, Jiyue
    Xu, Yang
    Zhang, Qi
    Zhao, Qiang
    Liu, Zhitian
    DESALINATION, 2025, 601