Improved Bohr inequality for harmonic mappings

被引:1
|
作者
Liu, Gang [1 ]
Ponnusamy, Saminathan [2 ,3 ,4 ]
机构
[1] Hengyang Normal Univ, Coll Math & Stat, Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang, Peoples R China
[2] Indian Inst Technol Madras, Dept Math, Chennai, India
[3] Lomonosov Moscow State Univ, Moscow Ctr Fundamental & Appl Math, Moscow, Russia
[4] Indian Inst Technol Madras, Dept Math, Chennai 600036, India
关键词
Bohr inequality; Bohr radius; bounded analytic function; harmonic mapping; Schwarz lemma; subordination; quasi-subordination; SUBORDINATING FAMILIES; ANALYTIC-FUNCTIONS; POWER-SERIES; RADIUS; THEOREM;
D O I
10.1002/mana.202000408
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In order to improve the classical Bohr inequality, we explain some refined versions for a quasi-subordination family of functions in this paper, one of which is key to build our results. Using these investigations, we establish an improved Bohr inequality with refined Bohr radius under particular conditions for a family of harmonic mappings defined in the unit disk... Along the line of extremal problems concerning the refined Bohr radius, we derive a series of results. Here, the family of harmonic mappings has the form f = h + g where g(0) = 0, the analytic part h is bounded by 1 and that |g'(z)| <= k|h'(z)| in D and for some k epsilon [0,1].
引用
收藏
页码:716 / 731
页数:16
相关论文
共 50 条
  • [21] A generalization of the Bohr inequality and its applications
    Kumar, Shankey
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (06) : 963 - 973
  • [22] Bohr’s phenomenon for the classes of Quasi-subordination and K-quasiregular harmonic mappings
    Ming-Sheng Liu
    Saminathan Ponnusamy
    Jun Wang
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [23] Refined Bohr inequality for bounded analytic functions
    Liu, Gang
    Liu, Zhihong
    Ponnusamy, Saminathan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 173
  • [24] Improved Bohr's Inequality for Shifted Disks
    Evdoridis, Stavros
    Ponnusamy, Saminathan
    Rasila, Antti
    RESULTS IN MATHEMATICS, 2021, 76 (01)
  • [25] Geometric Studies and the Bohr Radius for Certain Normalized Harmonic Mappings
    Mandal, Rajib
    Biswas, Raju
    Guin, Sudip Kumar
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (04)
  • [26] Bohr Radius for Subordination and K-quasiconformal Harmonic Mappings
    ZhiHong Liu
    Saminathan Ponnusamy
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 2151 - 2168
  • [27] Bohr Radius for Subordination and K-quasiconformal Harmonic Mappings
    Liu, ZhiHong
    Ponnusamy, Saminathan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2151 - 2168
  • [28] Bohr Inequalities for Certain Classes of Harmonic Mappings
    Molla Basir Ahamed
    Sabir Ahammed
    Mediterranean Journal of Mathematics, 2024, 21
  • [29] Bohr Radius for Some Classes of Harmonic Mappings
    K. Gangania
    S. Sivaprasad Kumar
    Iranian Journal of Science and Technology, Transactions A: Science, 2022, 46 : 883 - 890
  • [30] Improved Bohr inequalities for certain class of harmonic univalent functions
    Ahamed, Molla Basir
    Allu, Vasudevarao
    Halder, Himadri
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (02) : 267 - 290