Improved Bohr inequality for harmonic mappings

被引:1
|
作者
Liu, Gang [1 ]
Ponnusamy, Saminathan [2 ,3 ,4 ]
机构
[1] Hengyang Normal Univ, Coll Math & Stat, Hunan Prov Key Lab Intelligent Informat Proc & App, Hengyang, Peoples R China
[2] Indian Inst Technol Madras, Dept Math, Chennai, India
[3] Lomonosov Moscow State Univ, Moscow Ctr Fundamental & Appl Math, Moscow, Russia
[4] Indian Inst Technol Madras, Dept Math, Chennai 600036, India
关键词
Bohr inequality; Bohr radius; bounded analytic function; harmonic mapping; Schwarz lemma; subordination; quasi-subordination; SUBORDINATING FAMILIES; ANALYTIC-FUNCTIONS; POWER-SERIES; RADIUS; THEOREM;
D O I
10.1002/mana.202000408
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In order to improve the classical Bohr inequality, we explain some refined versions for a quasi-subordination family of functions in this paper, one of which is key to build our results. Using these investigations, we establish an improved Bohr inequality with refined Bohr radius under particular conditions for a family of harmonic mappings defined in the unit disk... Along the line of extremal problems concerning the refined Bohr radius, we derive a series of results. Here, the family of harmonic mappings has the form f = h + g where g(0) = 0, the analytic part h is bounded by 1 and that |g'(z)| <= k|h'(z)| in D and for some k epsilon [0,1].
引用
收藏
页码:716 / 731
页数:16
相关论文
共 50 条
  • [1] The Bohr inequality for certain harmonic mappings
    Allu, Vasudevarao
    Halder, Himadri
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2022, 33 (03): : 581 - 597
  • [2] BOHR PHENOMENON FOR CERTAIN CLASSES OF HARMONIC MAPPINGS
    Ahamed, Molla Basir
    Allu, Vasudevarao
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (04) : 1205 - 1225
  • [3] Bohr phenomenon for certain subclasses of harmonic mappings
    Allu, Vasudevarao
    Halder, Himadri
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 173
  • [4] Bohr Inequalities for Certain Classes of Harmonic Mappings
    Ahamed, Molla Basir
    Ahammed, Sabir
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (01)
  • [5] On Bohr's inequality for special subclasses of stable starlike harmonic mappings
    Jin, Wei
    Liu, Zhihong
    Hu, Qian
    Zhang, Wenbo
    OPEN MATHEMATICS, 2023, 21 (01):
  • [6] Bohr phenomenon for certain subclass of harmonic mappings
    Meher, Akash
    Gochhayat, Priyabrat
    JOURNAL OF ANALYSIS, 2024, 32 (06) : 3421 - 3451
  • [7] Bohr radius for locally univalent harmonic mappings
    Kayumov, Ilgiz R.
    Ponnusamy, Saminathan
    Shakirov, Nail
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (11-12) : 1757 - 1768
  • [8] On the Bohr's Inequality for Stable Mappings
    AbdulHadi, Zayid
    El Hajj, Layan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (01)
  • [9] Bohr-Rogosinski Inequalities for Certain Fully Starlike Harmonic Mappings
    Ahamed, Molla Basir
    Allu, Vasudevarao
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (04) : 1913 - 1927
  • [10] Bohr's phenomenon for the classes of Quasi-subordination and K-quasiregular harmonic mappings
    Liu, Ming-Sheng
    Ponnusamy, Saminathan
    Wang, Jun
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)