A general logarithmic asymptotic behavior for partial sums of i.i.d. random variables

被引:0
作者
Miao, Yu [1 ]
Li, Deli [2 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang, Henan, Peoples R China
[2] Lakehead Univ, Dept Math Sci, Thunder Bay, ON, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Large deviations; Laws of large numbers; Logarithmic asymptotic behaviors; Sums of i.i.d. random variables; ITERATED LOGARITHM; LAW;
D O I
10.1016/j.spl.2024.110043
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let 0 < p < 2 and theta > 0. Let {X, X-n; n >= 1} be a sequence of independent and identically distributed B-valued random variables and set S-n = Sigma(n)(i=1) X-t, n >= 1. In this note, a general logarithmic asymptotic behavior for {S-n; n >= 1} is established. We show that if S-n/n(1/p) ->(P) 0, then, for all s > 0, {lim(n ->infinity) sup log P (parallel to S-n parallel to > sn(1/p)) /(log n)(theta) = -p(-theta)(zeta) over bar (p, theta), lim(n ->infinity) inf log P (parallel to S-n parallel to > sn(1/p)) /(log n)(theta) = -p(-theta)(zeta) under bar (p, theta), where (zeta) over bar (p, theta) = - lim(t ->infinity) sup log (e(pt)P(log parallel to X parallel to > t))/t(theta) and (zeta) under bar (p, theta) = -lim(t ->infinity) inf log (e(pt)P(log parallel to X parallel to > t))/t(theta). The main tools used to prove this result are the symmetrization technique, an auxiliary lemma for the maximum of i.i.d. random variables, a moment inequality, and an exponential inequality.
引用
收藏
页数:11
相关论文
共 12 条
[1]  
DEACOSTA A, 1981, ANN PROBAB, V9, P157
[2]   A NEW PROOF OF THE HARTMAN-WINTNER LAW OF THE ITERATED LOGARITHM [J].
DEACOSTA, A .
ANNALS OF PROBABILITY, 1983, 11 (02) :270-276
[3]  
Feller W., 1971, An Introduction to Probability Theory and its Applications
[4]   A note on logarithmic tail asymptotics and mixing [J].
Gantert, N .
STATISTICS & PROBABILITY LETTERS, 2000, 49 (02) :113-118
[5]  
Gnedenko B.V., 1968, Limit Distributions for Sums of Independent Random Variables
[6]  
HOFFMANNJORGENSEN J, 1974, STUD MATH, V52, P159
[7]   Large deviations view points for heavy-tailed random walks [J].
Hu, Y ;
Nyrhinen, H .
JOURNAL OF THEORETICAL PROBABILITY, 2004, 17 (03) :761-768
[9]  
Ledoux Michel, 1991, Probability in Banach Spaces: Isoperimetry and Processes
[10]   A supplement to the laws of large numbers and the large deviations [J].
Li, Deli ;
Miao, Yu .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2021, 93 (08) :1261-1280