SPECTRAL CONVERGENCE IN GEOMETRIC QUANTIZATION ON K3 SURFACES

被引:0
|
作者
Hattori, Kota [1 ]
机构
[1] Keio Univ, 3-14-1 Hiyoshi,Kohoku ku, Yokohama 2238522, Japan
关键词
Geometric quantization; K3; surface; Bohr-Sommerfeld fiber; measured Gromov-Hausdorff convergence; RICCI CURVATURE; KAHLER; METRICS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the geometric quantization on K3 surfaces from the viewpoint of the spectral convergence. We take a special Lagrangian fibrations on the K3 surfaces and a family of hyper-Kahler structures tending to large complex structure limit, and show a spectral convergence of the partial derivative -Laplacians on the prequantum line bundle to the spectral structure related to the set of Bohr-Sommerfeld fibers.
引用
收藏
页码:315 / 374
页数:60
相关论文
共 50 条