Bike sharing and cable car demand forecasting using machine learning and deep learning multivariate time series approaches

被引:6
|
作者
Pelaez-Rodriguez, Cesar [1 ]
Perez-Aracil, Jorge [1 ]
Fister, Dusan [1 ]
Torres-Lopez, Ricardo [1 ]
Salcedo-Sanz, Sancho [1 ]
机构
[1] Univ Alcala, Dept Signal Proc & Commun, Campus Univ,Ctra Madrid-Barcelona Km 33, Alcala De Henares 28805, Spain
关键词
Cities green mobility; Bike sharing demand prediction; Cable car demand prediction; Machine learning; Deep learning; SHORT-TERM PREDICTION; ANALOG ENSEMBLE; SIMULATION; SELECTION; NETWORKS; PATTERNS; MOBILITY; SYSTEM; FIELD;
D O I
10.1016/j.eswa.2023.122264
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper the performance of different Machine Learning and Deep Learning approaches is evaluated in problems related to green mobility in big cities. Specifically, the forecasting of bike sharing demand in Madrid and Barcelona (Spain) is approached, for different prediction time-horizons, and also a problem of cable car demand forecasting in Madrid city. An important number of predictive variables are considered, which are grouped into four different sets (categorical/calendrical, persistence-based, meteorological and, as a novelty of the paper, information about analogue past instances), whose relevance is studied for all cases. A feature selection mechanism is also incorporated in order to improve the prediction accuracy of the proposed algorithms. A total of 12 different multivariate regression techniques are implemented, covering from Machine Learning methods to time-series Deep Learning approaches. Excellent results in all the prediction problems approached are reported. Finally, the consequences of obtaining accurate prediction in these three problem of green mobility in big cities are discussed. In addition, it is studied how the results could be exported to other similar cases in more general urban mobility studies. Novelties of the work include: (1) Addressing the forecast problem of passenger flow on a cable car using ML and DL multivariate techniques; (2) using the demand of analogous past instances as an additional feature to solve the demand prediction problems; and (3) the extraction of global conclusions about feature relevance when addressing a demand forecasting problem in green mobility.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Time Series Forecasting on Solar Irradiation using Deep Learning
    Sorkun, Murat Cihan
    Paoli, Christophe
    Incel, Ozlem Durmaz
    2017 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO), 2017, : 151 - 155
  • [32] Time series forecasting and anomaly detection using deep learning
    Iqbal, Amjad
    Amin, Rashid
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 182
  • [33] Financial Time Series Forecasting Using Deep Learning Network
    Preeti
    Dagar, Ankita
    Bala, Rajni
    Singh, Ram Pal
    APPLICATIONS OF COMPUTING AND COMMUNICATION TECHNOLOGIES, ICACCT 2018, 2018, 899 : 23 - 33
  • [34] Forecasting air quality time series using deep learning
    Freeman, Brian S.
    Taylor, Graham
    Gharabaghi, Bahram
    The, Jesse
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2018, 68 (08) : 866 - 886
  • [35] Forecasting Sunspot Time Series Using Deep Learning Methods
    Pala, Zeydin
    Atici, Ramazan
    SOLAR PHYSICS, 2019, 294 (05)
  • [36] Forecasting Sunspot Time Series Using Deep Learning Methods
    Zeydin Pala
    Ramazan Atici
    Solar Physics, 2019, 294
  • [37] Monitoring covariance in multivariate time series: Comparing machine learning and statistical approaches
    Weix, Derek
    Cath, Tzahi Y.
    Hering, Amanda S.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2024, 40 (05) : 2822 - 2840
  • [38] Topological machine learning for multivariate time series
    Wu, Chengyuan
    Hargreaves, Carol Anne
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2022, 34 (02) : 311 - 326
  • [39] A Comparative Study of Univariate and Multivariate Time Series Forecasting for CPO Prices Using Machine Learning Techniques
    Mohd Fuad, Juz Nur Fatiha Deena
    Ibrahim, Zaidah
    Adam, Noor Latiffah
    Mat Diah, Norizan
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2024, 14322 LNCS : 52 - 62
  • [40] Demand forecasting for e-retail sector using machine learning and deep learning methods
    Aci, Mehmet
    Dogansoy, Gamze Ayyildiz
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2022, 37 (03): : 1325 - 1339