HYPERSPECTRAL IMAGES SUPER-RESOLUTION ALGORITHMS BASED ON SPECTRAL SUBSPACE SPARSE TENSOR FACTORIZATION

被引:0
作者
Sun, Shasha
Bao, Wenxing [1 ]
Guo, Hao
Qu, Kewen
Feng, Wei
机构
[1] North Minzu Univ, Sch Comp Sci & Engn, Yinchuan, Peoples R China
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
基金
中国国家自然科学基金;
关键词
hyperspectral images; fusion; spectral subspace; sparse tensor;
D O I
10.1109/IGARSS52108.2023.10281973
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Hyperspectral image super resolution (HSI-SR) problem aims to fuse a low-resolution hyperspectral image (HSI) with its corresponding multispectral image (MSI) to obtain a high-resolution hyperspectral image (HSR). However, the commonly used methods have some limitations. For example, the matrix decomposition method does not preserve the spatial or spectral information of the image well, and the tensor decomposition method has a high computational complexity. This paper proposes a method based on spectral subspace sparse tensor factorization (SSTF), which learns the spectral subspace from hyperspectral images, constrains this model using sparse tensor regularisation, transforms it to solve a convex optimisation problem, and iteratively optimises the problem using the alternating direction method of multipliers (ADMM). The computational complexity of the algorithm is effectively reduced while retaining spatial and spectral features. Compared with the state-of-the-art methods, experimental results demonstrate the effectiveness of the SSTF method.
引用
收藏
页码:7455 / 7458
页数:4
相关论文
共 8 条
  • [1] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122
  • [2] Chen Y, 2019, INT GEOSCI REMOTE SE, P234, DOI [10.1109/igarss.2019.8897967, 10.1109/IGARSS.2019.8897967]
  • [3] Hyperspectral Image Super-Resolution via Subspace-Based Low Tensor Multi-Rank Regularization
    Dian, Renwei
    Li, Shutao
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (10) : 5135 - 5146
  • [4] Dian RW, 2018, INT GEOSCI REMOTE SE, P4003, DOI 10.1109/IGARSS.2018.8519213
  • [5] Hyperspectral image super-resolution via non-local sparse tensor factorization
    Dian, Renwei
    Fang, Leyuan
    Li, Shutao
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3862 - 3871
  • [6] Fusing Hyperspectral and Multispectral Images via Coupled Sparse Tensor Factorization
    Li, Shutao
    Dian, Renwei
    Fang, Leyuan
    Bioucas-Dias, Jose M.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (08) : 4118 - 4130
  • [7] A Convex Formulation for Hyperspectral Image Superresolution via Subspace-Based Regularization
    Simoes, Miguel
    Bioucas-Dias, Jose
    Almeida, Luis B.
    Chanussot, Jocelyn
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (06): : 3373 - 3388
  • [8] Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion
    Yokoya, Naoto
    Yairi, Takehisa
    Iwasaki, Akira
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (02): : 528 - 537