THE p-AAA ALGORITHM FOR DATA-DRIVEN MODELING OF PARAMETRIC DYNAMICAL SYSTEMS

被引:4
作者
Rodriguez, Andrea Carracedo [1 ]
Balicki, Linus [1 ]
Gugercin, Serkan [2 ,3 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Virginia Tech, Dept Math & Computat Modeling, Blacksburg, VA 24061 USA
[3] Virginia Tech, Data Analyt Div, Acad Data Sci, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
rational approximation; parametric systems; dynamical systems; interpolation; least-squares; transfer functions; RATIONAL INTERPOLATION; ERROR ESTIMATOR; REDUCTION; APPROXIMATION;
D O I
10.1137/20M1322698
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The AAA algorithm has become a popular tool for data-driven rational approximation of single-variable functions, such as transfer functions of a linear dynamical system. In the setting of parametric dynamical systems appearing in many prominent applications, the underlying (transfer) function to be modeled is a multivariate function. With this in mind, we develop the AAA framework for approximating multivariate functions where the approximant is constructed in the multivariate barycentric form. The method is data driven, in the sense that it does not require access to the full state-space model and requires only function evaluations. We discuss an extension to the case of matrix-valued functions, i.e., multi-input/multi-output dynamical systems, and provide a connection to the tangential interpolation theory. Several numerical examples illustrate the effectiveness of the proposed approach.
引用
收藏
页码:A1332 / A1358
页数:27
相关论文
共 45 条
  • [1] RATIONAL INTERPOLATION AND STATE-VARIABLE REALIZATIONS
    ANDERSON, BDO
    ANTOULAS, AC
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 137 : 479 - 509
  • [2] [Anonymous], 2005, Lecture Notes in Computational Science and Engineering, DOI [10.1007/3-540-27909-13, DOI 10.1007/3-540-27909-13]
  • [3] On two-variable rational interpolation
    Antoulas, A. C.
    Ionita, A. C.
    Lefteriu, S.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (08) : 2889 - 2915
  • [4] On the Scalar Rational Interpolation Problem
    Antoulas, A. C.
    Anderson, B. D. Q.
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1986, 3 (2-3) : 61 - 88
  • [5] Antoulas A. C., 2017, MODEL REDUCTION APPR, P335, DOI [DOI 10.1137/1.9781611974829.CH8, 10.1137/1.9781611974829.ch8]
  • [6] Antoulas AC, 2020, COMPUT SCI ENG SER, P1, DOI 10.1137/1.9781611976083
  • [7] INTERPOLATORY PROJECTION METHODS FOR PARAMETERIZED MODEL REDUCTION
    Baur, Ulrike
    Beattie, Christopher
    Benner, Peter
    Gugercin, Serkan
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05) : 2489 - 2518
  • [8] Benner P., 2017, MODEL REDUCTION APPR, DOI [DOI 10.1137/1.9781611974829, 10.1137/1.9781611974829]
  • [9] Benner P, 2017, SURVEYS IN DIFFERENTIAL-ALGEBRAIC EQUATIONS IV, P107, DOI 10.1007/978-3-319-46618-7_3
  • [10] A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems
    Benner, Peter
    Gugercin, Serkan
    Willcox, Karen
    [J]. SIAM REVIEW, 2015, 57 (04) : 483 - 531