A Cubic B-Spline Collocation Method for Barrier Options under the CEV Model

被引:0
作者
Yu, Xiwei [1 ]
Hu, Qing [1 ]
Sun, Yudong [2 ]
机构
[1] Guizhou Minzu Univ, Coll Data Sci & Informat Engn, Guiyang 550025, Peoples R China
[2] Guizhou Minzu Univ, Dept Finance, Guiyang 550025, Peoples R China
关键词
CEV model; barrier options; cubic B-spline; Crank-Nicolson method; CONSTANT ELASTICITY; NUMERICAL-METHOD; STABILITY; EQUATION; JUMP;
D O I
10.3390/math11183979
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct a new numerical algorithm for the partial differential equation of up-and-out put barrier options under the CEV model. In this method, we use the Crank-Nicolson scheme to discrete temporal variables and the cubic B-spline collocation method to discrete spatial variables. The method is stable and has second-order convergence for both time and space variables. The convergence analysis of the proposed method is discussed in detail. Finally, numerical examples verify the stability and accuracy of the method.
引用
收藏
页数:18
相关论文
共 50 条
[41]   A cubic B-spline collocation method with new approximation for the numerical treatment of the heat equation with classical and non-classical boundary conditions [J].
Tassaddiq, Asifa ;
Yaseen, Muhammad ;
Yousaf, Aatika ;
Srivastava, Rekha .
PHYSICA SCRIPTA, 2021, 96 (04)
[42]   Cubic B-spline differential quadrature methods and stability for Burgers' equation [J].
Korkmaz, Alper ;
Dag, Idris .
ENGINEERING COMPUTATIONS, 2013, 30 (03) :320-344
[43]   Cubic B-spline curve approximation by curve unclamping [J].
Chen, Xiao-Diao ;
Ma, Weiyin ;
Paul, Jean-Claude .
COMPUTER-AIDED DESIGN, 2010, 42 (06) :523-534
[44]   Numerical solution of highly non-linear fractional order reaction advection diffusion equation using the cubic B-spline collocation method [J].
Dwivedi, Kushal Dhar ;
Das, Subir ;
Rajeev ;
Baleanu, Dumitru .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2022, 23 (7-8) :1157-1172
[45]   Solution of parabolic PDEs by modified quintic B-spline Crank-Nicolson collocation method [J].
Tamsir, Mohammad ;
Dhiman, Neeraj ;
Chauhan, Amit ;
Chauhan, Anand .
AIN SHAMS ENGINEERING JOURNAL, 2021, 12 (02) :2073-2082
[46]   A robust uniform B-spline collocation method for solving the generalized PHI-four equation [J].
Zahra, W. K. ;
Ouf, W. A. ;
El-Azab, M. S. .
APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2016, 11 (01) :364-376
[47]   A B-spline collocation method for solving fractional diffusion and fractional diffusion-wave equations [J].
Esen, A. ;
Tasbozan, O. ;
Ucar, Y. ;
Yagmurlu, N. M. .
TBILISI MATHEMATICAL JOURNAL, 2015, 8 (02) :181-193
[48]   Exponential B-spline collocation method for solving the generalized Newell-Whitehead-Segel equation [J].
Wasim, Imtiaz ;
Abbas, Muhammad ;
Iqbal, Muhammad Kashif ;
Hayat, Afzaal Mubashir .
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 20 (04) :313-324
[49]   A Fractional B-spline Collocation Method for the Numerical Solution of Fractional Predator-Prey Models [J].
Pitolli, Francesca .
FRACTAL AND FRACTIONAL, 2018, 2 (01) :1-16
[50]   Hybrid Cubic B-spline Method for Solving A Class of Singular Boundary Value Problems [J].
Heilat, Ahmed Salem ;
Batiha, Belal ;
Qawasmeh, Tariq ;
Hatamleh, Raed .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (02) :751-762