A Cubic B-Spline Collocation Method for Barrier Options under the CEV Model

被引:0
作者
Yu, Xiwei [1 ]
Hu, Qing [1 ]
Sun, Yudong [2 ]
机构
[1] Guizhou Minzu Univ, Coll Data Sci & Informat Engn, Guiyang 550025, Peoples R China
[2] Guizhou Minzu Univ, Dept Finance, Guiyang 550025, Peoples R China
关键词
CEV model; barrier options; cubic B-spline; Crank-Nicolson method; CONSTANT ELASTICITY; NUMERICAL-METHOD; STABILITY; EQUATION; JUMP;
D O I
10.3390/math11183979
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct a new numerical algorithm for the partial differential equation of up-and-out put barrier options under the CEV model. In this method, we use the Crank-Nicolson scheme to discrete temporal variables and the cubic B-spline collocation method to discrete spatial variables. The method is stable and has second-order convergence for both time and space variables. The convergence analysis of the proposed method is discussed in detail. Finally, numerical examples verify the stability and accuracy of the method.
引用
收藏
页数:18
相关论文
共 50 条
[31]   Exponential B-spline collocation solutions to the Gardner equation [J].
Hepson, Ozlem Ersoy ;
Korkmaz, Alper ;
Dag, Idris .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (04) :837-850
[32]   Numerical solution of Burgers’ equation by B-spline collocation [J].
Yousefi M. ;
Rashidinia J. ;
Yousefi M. ;
Moudi M. .
Afrika Matematika, 2016, 27 (7-8) :1287-1293
[33]   A note on options and bubbles under the CEV model: implications for pricing and hedging [J].
Dias, Jose Carlos ;
Nunes, Joao Pedro Vidal ;
Cruz, Aricson .
REVIEW OF DERIVATIVES RESEARCH, 2020, 23 (03) :249-272
[34]   Pricing and static hedging of European-style double barrier options under the jump to default extended CEV model [J].
Dias, Jose Carlos ;
Vidal Nunes, Joao Pedro ;
Ruas, Joao Pedro .
QUANTITATIVE FINANCE, 2015, 15 (12) :1995-2010
[35]   An explicit time integration method for structural dynamics using cubic B-spline polynomial functions [J].
Rostami, S. ;
Shojaee, S. ;
Saffari, H. .
SCIENTIA IRANICA, 2013, 20 (01) :23-33
[36]   An Innovative Numerical Method Utilizing Novel Cubic B-Spline Approximations to Solve Burgers' Equation [J].
Ali, Ishtiaq ;
Yaseen, Muhammad ;
Abdullah, Muhammad ;
Khan, Sana ;
Belgacem, Fethi Bin Muhammad .
MATHEMATICS, 2023, 11 (19)
[37]   Cubic B-spline finite element method for generalized reaction-diffusion equation with delay [J].
Lubo, Gemeda Tolessa ;
Duressa, Gemechis File .
SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2023, 41 (02) :256-265
[38]   Sextic B-spline collocation method for solving Euler-Bernoulli Beam Models [J].
Mohammadi, Reza .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 241 :151-166
[39]   A Trigonometric Quintic B-Spline Basis Collocation Method for the KdV-Kawahara Equation [J].
Karaagac, B. ;
Esen, A. ;
Owolabi, K. M. ;
Pindza, E. .
NUMERICAL ANALYSIS AND APPLICATIONS, 2023, 16 (03) :216-228
[40]   A fourth-order B-spline collocation method for nonlinear Burgers–Fisher equation [J].
Aditi Singh ;
Sumita Dahiya ;
S. P. Singh .
Mathematical Sciences, 2020, 14 :75-85