Hypergraph Ramsey numbers of cliques versus stars

被引:1
作者
Conlon, David [1 ]
Fox, Jacob [2 ]
He, Xiaoyu [3 ,6 ]
Mubayi, Dhruv [4 ]
Suk, Andrew [5 ]
Verstraete, Jacques [5 ]
机构
[1] CALTECH, Dept Math, Pasadena, CA USA
[2] Stanford Univ, Dept Math, Stanford, CA USA
[3] Princeton Univ, Dept Math, Princeton, NJ USA
[4] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL USA
[5] Univ Calif San Diego, Dept Math, La Jolla, CA USA
[6] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
Ramsey theory; hypergraph Ramsey numbers; stepping up; probabilistic method;
D O I
10.1002/rsa.21155
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let K-m((3)) denote the complete 3-uniform hypergraph on m vertices and S-n((3)) the 3-uniform hypergraph on n + 1 vertices consisting of all ( (n) (2)) edges incident to a given vertex. Whereas many hypergraph Ramsey numbers grow either at most polynomially or at least exponentially, we show that the off-diagonal Ramsey number r(K-4((3)), S-n((3))) exhibits an unusual intermediate growth rate, namely, [GRAPHICS] . for some positive constants c and c'. The proof of these bounds brings in a novel Ramsey problem on grid graphs whichmay be of independent interest: what is the minimum N such that any 2-edge-coloring of the Cartesian product K-N square K-N contains either a red rectangle or a blue K-n?
引用
收藏
页码:610 / 623
页数:14
相关论文
共 17 条
  • [1] A NOTE ON RAMSEY NUMBERS
    AJTAI, M
    KOMLOS, J
    SZEMEREDI, E
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1980, 29 (03) : 354 - 360
  • [2] Alon N., 2016, PROBABILISTIC METHOD, V4th
  • [3] Aragao L., LOWER BOUND SET COLO
  • [4] The independent neighborhoods process
    Bohman, Tom
    Mubayi, Dhruv
    Picollelli, Michael
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2016, 214 (01) : 333 - 357
  • [5] Conlon D., 2015, London Math. Soc. Lecture Note Ser., V424, P49
  • [6] Conlon D., ARXIV
  • [7] On the Grid Ramsey Problem and Related Questions
    Conlon, David
    Fox, Jacob
    Lee, Choongbum
    Sudakov, Benny
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (17) : 8052 - 8084
  • [8] An improved bound for the stepping-up lemma
    Conlon, David
    Fox, Jacob
    Sudakov, Benny
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (09) : 1191 - 1196
  • [9] HYPERGRAPH RAMSEY NUMBERS
    Conlon, David
    Fox, Jacob
    Sudakov, Benny
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (01) : 247 - 266
  • [10] Erdos P., 1972, PERIOD MATH HUNG, V2, P295, DOI DOI 10.1007/BF02018669