Deep Autoencoder Thermography for Defect Detection of Carbon Fiber Composites

被引:71
作者
Liu, Kaixin [1 ]
Zheng, Mingkai [1 ]
Liu, Yi [1 ]
Yang, Jianguo [1 ]
Yao, Yuan [2 ]
机构
[1] Zhejiang Univ Technol, Inst Proc Equipment & Control Engn, Hangzhou 310023, Peoples R China
[2] Natl Tsing Hua Univ, Dept Chem Engn, Hsinchu 30013, Taiwan
基金
中国国家自然科学基金;
关键词
Feature extraction; Heating systems; Training; Decoding; Composite materials; Three-dimensional displays; Nonhomogeneous media; Composite material; deep autoencoder (DAE); feature extraction; infrared thermography (IRT); nondestructive testing (NDT); PRINCIPAL COMPONENT THERMOGRAPHY; DIMENSIONALITY; OPTIMIZATION; ENHANCEMENT;
D O I
10.1109/TII.2022.3172902
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Infrared thermography is an economical nondestructive testing technique for structural health monitoring of composite materials. However, the nonlinear nature of the thermographic data and the adverse effects of noise and inhomogeneous backgrounds prevent it from achieving satisfactory results. Most of the existing thermographic data analysis methods are supervised and/or linear, which, therefore, are not favorable for nonlinear feature extraction of unlabeled thermograms. In this article, a deep autoencoder thermography (DAT) method is proposed for detecting subsurface defects in composite materials. The multilayer network structure of DAT can handle nonlinear temperature profiles, and the output of the intermediate hidden layer is visualized to highlight defects. The layer-by-layer feature visualization reveals how the model extracts defect features. A loss inflection point scheme is utilized to determine a suitable depth of the model. Moreover, a new quantitative index is proposed to compare the defect detectability of different methods.
引用
收藏
页码:6429 / 6438
页数:10
相关论文
共 30 条
  • [1] Wavelet-Integrated Alternating Sparse Dictionary Matrix Decomposition in Thermal Imaging CFRP Defect Detection
    Ahmed, Junaid
    Gao, Bin
    Woo, Wai Lok
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (07) : 4033 - 4043
  • [2] Representation Learning: A Review and New Perspectives
    Bengio, Yoshua
    Courville, Aaron
    Vincent, Pascal
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) : 1798 - 1828
  • [3] Reconstruction of cracks in a carbon fiber-reinforced polymer laminate plate from signals of eddy current testing
    Du, Yali
    Li, Xudong
    Xie, Shejuan
    Yang, Shiyou
    Chen, Zhenmao
    [J]. JOURNAL OF COMPOSITE MATERIALS, 2020, 54 (24) : 3527 - 3536
  • [4] Ezekoye O. A., 2016, SFPE HDB FIRE PROTEC, P25
  • [5] Large-Dimensional Seismic Inversion Using Global Optimization With Autoencoder-Based Model Dimensionality Reduction
    Gao, Zhaoqi
    Li, Chuang
    Liu, Naihao
    Pan, Zhibin
    Gao, Jinghuai
    Xu, Zongben
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (02): : 1718 - 1732
  • [6] Infrared machine vision and infrared thermography with deep learning: A review
    He, Yunze
    Deng, Baoyuan
    Wang, Hongjin
    Cheng, Liang
    Zhou, Ke
    Cai, Siyuan
    Ciampa, Francesco
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2021, 116
  • [7] Reducing the dimensionality of data with neural networks
    Hinton, G. E.
    Salakhutdinov, R. R.
    [J]. SCIENCE, 2006, 313 (5786) : 504 - 507
  • [8] A Lightweight Spatial and Temporal Multi-Feature Fusion Network for Defect Detection
    Hu, Bozhen
    Gao, Bin
    Woo, Wai Lok
    Ruan, Lingfeng
    Jin, Jikun
    Yang, Yang
    Yu, Yongjie
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 472 - 486
  • [9] Nondestructive testing with thermography
    Ibarra-Castanedo, Clemente
    Tarpani, Jose Ricardo
    Maldague, Xavier P. V.
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2013, 34 (06) : S91 - S109
  • [10] Ioffe S, 2015, Proceedings of Machine Learning Research, P448, DOI DOI 10.48550/ARXIV.1502.03167