An ETD method for multi-asset American option pricing under jump-diffusion model

被引:1
作者
Company, Rafael [1 ]
Egorova, Vera N. [2 ]
Jodar, Lucas [1 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, Valencia, Spain
[2] Univ Cantabria, Dept Matemat Aplicada & Ciencias Comp, Santander, Spain
关键词
exponential time differencing; jump-diffusion model; multi-asset option pricing; multivariate Gauss-Hermite quadrature; partial-integro differential equation; FINITE-DIFFERENCE SCHEME; PENALTY METHOD; VALUATION;
D O I
10.1002/mma.9125
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a numerical method for American multi-asset options under jump-diffusion model based on the combination of the exponential time differencing (ETD) technique for the differential operator and Gauss-Hermite quadrature for the integral term. In order to simplify the computational stencil and improve characteristics of the ETD-scheme mixed derivative eliminating transformation is applied. The results are compared with recently proposed methods.
引用
收藏
页码:10332 / 10347
页数:16
相关论文
共 37 条
[1]   A numerical method to price discrete double Barrier options under a constant elasticity of variance model with jump diffusion [J].
Ahmadian, D. ;
Ballestra, L. V. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (11) :2310-2328
[2]   An extremely efficient numerical method for pricing options in the Black-Scholes model with jumps [J].
Ahmadian, Davood ;
Vincenzo Ballestra, Luca ;
Karimi, Nader .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (02) :1843-1862
[3]  
[Anonymous], 2007, Introduction to Stochastic Calculus Applied to Finance
[4]  
[Anonymous], 2000, Review of derivatives research
[5]  
Bensoussan A., 1982, CONTROLE IMPULSIONNE, V11
[6]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[7]   Operator splitting schemes for American options under the two-asset Merton jump-diffusion model [J].
Boen, Lynn ;
In't Hout, Karel J. .
APPLIED NUMERICAL MATHEMATICS, 2020, 153 :114-131
[8]   Numerical solution of two asset jump diffusion models for option valuation [J].
Clift, Simon S. ;
Forsyth, Peter A. .
APPLIED NUMERICAL MATHEMATICS, 2008, 58 (06) :743-782
[9]   A mixed derivative terms removing method in multi-asset option pricing problems [J].
Company, R. ;
Egorova, V. N. ;
Jodar, L. ;
Soleymani, F. .
APPLIED MATHEMATICS LETTERS, 2016, 60 :108-114
[10]   A front-fixing ETD numerical method for solving jump-diffusion American option pricing problems [J].
Company, Rafael ;
Egorova, Vera N. ;
Jodar, Lucas .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 189 :69-84