Charge transport in two-dimensional disordered systems with an external electric field

被引:2
作者
Dutra, R. F. [1 ]
Santos Junior, M. S. [1 ]
Messias, D. [1 ]
Mendes, C. V. C. [1 ]
Sales, M. O. [2 ]
de Moura, F. A. B. F. [1 ]
机构
[1] Univ Fed Alagoas, Inst Fis, BR-57072970 Maceio, AL, Brazil
[2] Inst Fed Maranhao IFMA, Campus SaoJoao dos Patos,Rua Padre Santiago S-N, BR-65665000 Sao Joao Dos Patos, MA, Brazil
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2023年 / 34卷 / 08期
关键词
Localization; correlated disorder; electric field; ONE-DIMENSIONAL SYSTEMS; ANDERSON MODEL; MOBILITY EDGE; LOCALIZATION; DYNAMICS; ABSENCE; DELOCALIZATION; DIFFUSION; MECHANISM;
D O I
10.1142/S0129183123501103
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we consider a square lattice with correlated random hopping terms under the effect of an external electric field. We analyzed the dynamics of an initially localized electronic wave packet using a Taylor formalism to solve the Schrodinger dynamic equation. Our calculations suggest that the correlated disorder promotes a fast electronic propagation for intermediate times. When we switch on a static electric field, we observe an oscillatory behavior similar to the well-known "Bloch oscillations " phenomenology. We calculate the frequency of these oscillations, and our results are in good agreement with those predicted by the semi-classical approach used in crystalline lattices. Based on the local disorder and in the absence of extended states in our model, we discussed the stability of these apparent "Bloch oscillations ".
引用
收藏
页数:11
相关论文
共 42 条
[1]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[2]   Vibrational modes in harmonic chains with diluted disorder [J].
Albuquerque, SS ;
de Moura, FABF ;
Lyra, ML .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 357 (01) :165-172
[3]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[4]  
Ballato J., 2021, FRONT PHYS-BEIJING, V681, P9
[5]   Anderson-Mott transition in a disordered Hubbard chain with correlated hopping [J].
Battista, Francesca ;
Camjayi, Alberto ;
Arrachea, Liliana .
PHYSICAL REVIEW B, 2017, 96 (04)
[6]   Experimental evidence of delocalized states in random dimer superlattices [J].
Bellani, V ;
Diez, E ;
Hey, R ;
Toni, L ;
Tarricone, L ;
Parravicini, GB ;
Domínguez-Adame, F ;
Gómez-Alcalá, R .
PHYSICAL REVIEW LETTERS, 1999, 82 (10) :2159-2162
[7]   Special Issue "Localisation 2020": Editorial Summary [J].
Bhatt, R. N. ;
Kettemann, S. .
ANNALS OF PHYSICS, 2021, 435
[8]   One-electron propagation in Fermi, Pasta, Ulam disordered chains with Gaussian acoustic pulse pumping [J].
da Silva, L. D. ;
dos Santos, J. L. L. ;
Ranciaro Neto, A. ;
Sales, M. O. ;
de Moura, F. A. B. F. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2017, 28 (08)
[9]   Vibrational modes in aperiodic one-dimensional harmonic chains [J].
de Moura, F. A. B. F. ;
Viana, L. P. ;
Frery, A. C. .
PHYSICAL REVIEW B, 2006, 73 (21)
[10]   DYNAMICS OF ONE-ELECTRON IN A ONE-DIMENSIONAL SYSTEMS WITH AN APERIODIC HOPPING DISTRIBUTION [J].
de Moura, F. A. B. F. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2011, 22 (01) :63-69