MGMT promoter methylation prediction based on multiparametric MRI via vision graph neural network

被引:0
作者
Hu, Mingzhe [1 ,2 ,3 ]
Yang, Kailin [4 ]
Wang, Jing [1 ,2 ]
Qiu, Richard L. J. [1 ,2 ]
Roper, Justin [1 ,2 ]
Kahn, Shannon [1 ,2 ]
Shu, Hui-Kuo [1 ,2 ]
Yang, Xiaofeng [1 ,2 ,3 ,5 ,6 ]
机构
[1] Emory Univ, Dept Radiat Oncol, Atlanta, GA 30322 USA
[2] Winship Canc Inst, Atlanta, GA 30322 USA
[3] Emory Univ, Dept Comp Sci & Informat, Atlanta, GA 30307 USA
[4] Cleveland Clin, Taussig Canc Ctr, Dept Radiat Oncol, Cleveland, OH USA
[5] Georgia Inst Technol, Atlanta, GA 30332 USA
[6] Emory Univ, Dept Biomed Engn, Atlanta, GA 30332 USA
基金
美国国家卫生研究院;
关键词
glioblastoma; O6-methylguanine-DNA methyltransferase promoter methylation; prognostic biomarker; magnetic resonance imaging; deep learning; graph neural network; PROTEIN EXPRESSION; GLIOBLASTOMA; SURVIVAL; RADIOTHERAPY; TEMOZOLOMIDE; CONCOMITANT; IMAGES;
D O I
10.1117/1.JMI.11.1.014503
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Glioblastoma (GBM) is aggressive and malignant. The methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter in GBM tissue is considered an important biomarker for developing the most effective treatment plan. Although the standard method for assessing the MGMT promoter methylation status is via bisulfite modification and deoxyribonucleic acid (DNA) sequencing of biopsy or surgical specimens, a secondary automated method based on medical imaging may improve the efficiency and accuracy of those tests. Approach: We propose a deep vision graph neural network (ViG) using multiparametric magnetic resonance imaging (MRI) to predict the MGMT promoter methylation status noninvasively. Our model was compared to the RSNA radiogenomic classification winners. The dataset includes 583 usable patient cases. Combinations of MRI sequences were compared. Our multi-sequence fusion strategy was compared with those using single MR sequences. Results: Our best model [Fluid Attenuated Inversion Recovery (FLAIR), T1-weighted pre-contrast (T1w), T2-weighted (T2)] outperformed the winning models with a test area under the curve (AUC) of 0.628, an accuracy of 0.632, a precision of 0.646, a recall of 0.677, a specificity of 0.581, and an F1 score of 0.661. Compared to the winning models with single MR sequences, our ViG utilizing fused-MRI showed a significant improvement statistically in AUC scores, which are FLAIR (p = 0.042), T1w (p = 0.017), T1wCE (p = 0.001), and T2 (p = 0.018). Conclusions: Our model is superior to challenge champions. A graph representation of the medical images enabled good handling of complexity and irregularity. Our work provides an automatic secondary check pipeline to ensure the correctness of MGMT methylation status prediction.
引用
收藏
页数:17
相关论文
共 58 条
[1]  
Afshar P, 2019, INT CONF ACOUST SPEE, P1368, DOI 10.1109/ICASSP.2019.8683759
[2]  
Agarap Abien Fred, 2018, arXiv, DOI 10.48550/arXiv.1803.08375
[3]  
Albawi S, 2017, I C ENG TECHNOL
[4]   Challenges to curing primary brain tumours [J].
Aldape, Kenneth ;
Brindle, Kevin M. ;
Chesler, Louis ;
Chopra, Rajesh ;
Gajjar, Amar ;
Gilbert, Mark R. ;
Gottardo, Nicholas ;
Gutmann, David H. ;
Hargrave, Darren ;
Holland, Eric C. ;
Jones, David T. W. ;
Joyce, Johanna A. ;
Kearns, Pamela ;
Kieran, Mark W. ;
Mellinghoff, Ingo K. ;
Merchant, Melinda ;
Pfister, Stefan M. ;
Pollard, Steven M. ;
Ramaswamy, Vijay ;
Rich, Jeremy N. ;
Robinson, Giles W. ;
Rowitch, David H. ;
Sampson, John H. ;
Taylor, Michael D. ;
Workman, Paul ;
Gilbertson, Richard J. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (08) :509-520
[5]  
Baid U, 2021, Arxiv, DOI [arXiv:2107.02314, 10.48550/arXiv.2107.02314]
[6]   MGMT Status as a Clinical Biomarker in Glioblastoma [J].
Butler, Madison ;
Pongor, Lorinc ;
Su, Yu-Ting ;
Xi, Liqiang ;
Raffeld, Mark ;
Quezado, Martha ;
Trepel, Jane ;
Aldape, Kenneth ;
Pommier, Yves ;
Wu, Jing .
TRENDS IN CANCER, 2020, 6 (05) :380-391
[7]  
Calzada D., 2022, IEEE POWER ENERGY C, P1
[8]   Simple and Fast Convolutional Neural Network Applied to Median Cross Sections for Predicting the Presence of MGMT Promoter Methylation in FLAIR MRI Scans [J].
Chen, Daniel Tianming ;
Chen, Allen Tianle ;
Wang, Haiyan .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 :227-238
[9]  
Corso G, 2020, ADV NEUR IN, V33
[10]   A multi-sequences MRI deep framework study applied to glioma classfication [J].
Coupet, Matthieu ;
Urruty, Thierry ;
Leelanupab, Teerapong ;
Naudin, Mathieu ;
Bourdon, Pascal ;
Maloigne, Christine Fernandez ;
Guillevin, Remy .
MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (10) :13563-13591