Learn to Optimize the Constrained Shortest Path on Large Dynamic Graphs

被引:1
|
作者
Yin, Jiaming [1 ]
Rao, Weixiong [1 ]
Zhao, Qinpei [1 ]
Zhang, Chenxi [1 ]
Hui, Pan [2 ,3 ]
机构
[1] Tongji Univ, Shanghai 200070, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Syst & Media Lab SyMLab, Hong Kong, Peoples R China
[3] Univ Helsinki, Dept Comp Sci, Helsinki 00100, Finland
基金
中国国家自然科学基金;
关键词
Heuristic algorithms; Vehicle dynamics; Convolution; Roads; Q-learning; Labeling; Optimization; Constrained shortest path; combinatorial optimization; reinforcement learning; dynamic graphs; ALGORITHM; TIME;
D O I
10.1109/TMC.2023.3258974
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The constrained shortest path (CSP) problem has wideapplications in travel path planning, mobile video broadcasting andnetwork routing. Existing works do not work well on large dynamicgraphs and suffer from either ineffectiveness or low scalability is-sues. To overcome these issues, in this paper, we propose an efficientand effective solution framework, namelyCSP_GS.Thesolutionframework includes two key components: (1) the techniques todecompose a large CSP instance into multiple small sub-instancesand (2) the developed learning model CSP_DQN to solve small CSP instances. The evaluation result on real road network graphs indicates that our approach CSP_GS performs well on large dynamicgraphs by rather high quality and reasonable running time, and particularly adapt to significant graph changes even with brokenedges. To the best of our knowledge, this is the first learning-basedmodel to well solve theCSPproblem on large dynamic graphs.
引用
收藏
页码:2456 / 2469
页数:14
相关论文
共 50 条
  • [1] Shortest Path Tree Computation in Dynamic Graphs
    Chan, Edward P. F.
    Yang, Yaya
    IEEE TRANSACTIONS ON COMPUTERS, 2009, 58 (04) : 541 - 557
  • [2] Finding the Shortest Path with Vertex Constraint over Large Graphs
    Yang, Yajun
    Li, Zhongfei
    Wang, Xin
    Hu, Qinghua
    COMPLEXITY, 2019, 2019
  • [3] An adaptive amoeba algorithm for shortest path tree computation in dynamic graphs
    Zhang, Xiaoge
    Chan, Felix T. S.
    Yang, Hai
    Deng, Yong
    INFORMATION SCIENCES, 2017, 405 : 123 - 140
  • [4] An All Pairs Shortest Path Algorithm for Dynamic Graphs
    Alshammari, Muteb
    Rezgui, Abdelmounaam
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2020, 15 (01): : 347 - 365
  • [5] Answering Min-Max Resource-Constrained Shortest Path Queries Over Large Graphs
    Qian, Haoran
    Zheng, Weiguo
    Zhang, Zhijie
    Fu, Bo
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (01) : 60 - 74
  • [6] The cardinality-constrained shortest path problem in 2-graphs
    Dahl, G
    Realfsen, B
    NETWORKS, 2000, 36 (01) : 1 - 8
  • [7] A single-source shortest path algorithm for dynamic graphs
    Alshammari, Muteb
    Rezgui, Abdelmounaam
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 1063 - 1068
  • [8] On an exact method for the constrained shortest path problem
    Lozano, Leonardo
    Medaglia, Andres L.
    COMPUTERS & OPERATIONS RESEARCH, 2013, 40 (01) : 378 - 384
  • [9] Constrained shortest path with uncertain transit times
    Mokarami, Shaghayegh
    Hashemi, S. Mehdi
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 63 (01) : 149 - 163
  • [10] Disk-based shortest path discovery using distance index over large dynamic graphs
    Hong, Jihye
    Park, Kisung
    Han, Yongkoo
    Rasel, Mostofa Kamal
    Vonvou, Dawanga
    Lee, Young-Koo
    INFORMATION SCIENCES, 2017, 382 : 201 - 215