Boosting the Interfacial Stability of the Li6PS5Cl Electrolyte with a Li Anode via In Situ Formation of a LiF-Rich SEI Layer and a Ductile Sulfide Composite Solid Electrolyte

被引:14
|
作者
Serbessa, Gashahun Gobena [1 ,2 ]
Taklu, Bereket Woldegbreal [3 ]
Nikodimos, Yosef [1 ]
Temesgen, Nigusu Tiruneh [1 ]
Muche, Zabish Bilew [1 ]
Merso, Semaw Kebede [1 ]
Yeh, Tsung-, I [1 ]
Liu, Ya-Jun [1 ]
Liao, Wei-Sheng [3 ]
Wang, Chia-Hsin [4 ]
Wu, She-Huang [3 ,5 ]
Su, Wei-Nien [3 ,5 ]
Yang, Chun-Chen [2 ,6 ]
Hwang, Bing Joe [1 ,4 ,5 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Nanoelectrochem Lab, Taipei 106, Taiwan
[2] Ming Chi Univ Technol, Battery Res Ctr Green Energy, New Taipei 24301, Taiwan
[3] Natl Taiwan Univ Sci & Technol, Grad Inst Appl Sci & Technol, Nanoelectrochem Lab, Taipei 106, Taiwan
[4] Natl Synchrotron Radiat Res Ctr NSRRC, Hsinchu 30076, Taiwan
[5] Natl Taiwan Univ Sci & Technol, Sustainable Electrochem Energy Dev Ctr, Taipei 106, Taiwan
[6] Ming Chi Univ Technol, Dept Chem Engn, New Taipei 24301, Taiwan
关键词
solid-state battery; lithiummetal anode; insitu LiF generation; dendrite suppression; interfacialstability; solvent-free solid sulfide composite electrolyte; LITHIUM DENDRITE FORMATION; CONDUCTIVITY; BATTERIES;
D O I
10.1021/acsami.3c14763
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Due to its good mechanical properties and high ionic conductivity, the sulfide-type solid electrolyte (SE) can potentially realize all-solid-state batteries (ASSBs). Nevertheless, challenges, including limited electrochemical stability, insufficient solid-solid contact with the electrode, and reactivity with lithium, must be addressed. These challenges contribute to dendrite growth and electrolyte reduction. Herein, a straightforward and solvent-free method was devised to generate a robust artificial interphase between lithium metal and a SE. It is achieved through the incorporation of a composite electrolyte composed of Li6PS5Cl (LPSC), polyethylene glycol (PEG), and lithium bis(fluorosulfonyl)imide (LiFSI), resulting in the in situ creation of a LiF-rich interfacial layer. This interphase effectively mitigates electrolyte reduction and promotes lithium-ion diffusion. Interestingly, including PEG as an additive increases mechanical strength by enhancing adhesion between sulfide particles and improves the physical contact between the LPSC SE and the lithium anode by enhancing the ductility of the LPSC SE. Moreover, it acts as a protective barrier, preventing direct contact between the SE and the Li anode, thereby inhibiting electrolyte decomposition and reducing the electronic conductivity of the composite SE, thus mitigating the dendrite growth. The Li|Li symmetric cells demonstrated remarkable cycling stability, maintaining consistent performance for over 3000 h at a current density of 0.1 mA cm(-2), and the critical current density of the composite solid electrolyte (CSE) reaches 4.75 mA cm(-2). Moreover, the all-solid-state lithium metal battery (ASSLMB) cell with the CSEs exhibits remarkable cycling stability and rate performance. This study highlights the synergistic combination of the in-situ-generated artificial SE interphase layer and CSEs, enabling high-performance ASSLMBs.
引用
收藏
页码:10832 / 10844
页数:13
相关论文
共 36 条
  • [31] All -solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: Effect of binder content
    Zhang, Jun
    Zhong, Haoyue
    Zheng, Chao
    Xia, Yang
    Liang, Chu
    Huang, Hui
    Gan, Yongping
    Tao, Xinyong
    Zhang, Wenkui
    JOURNAL OF POWER SOURCES, 2018, 391 : 73 - 79
  • [32] Excellent Lithium Metal Anode Performance via In Situ Interfacial Layer Induced by Li6.75La3Zr1.75Ta0.25O12@Amorphous Li3OCl Composite Solid Electrolyte
    Tian, Yijun
    Ding, Fei
    Sang, Lin
    He, Yan-Bing
    Liu, Xingjiang
    Xu, Qiang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (05): : 4781 - 4798
  • [33] Enhancing the Stability of Sulfur Cathodes in Li-S Cells via in Situ Formation of a Solid Electrolyte Layer (vol 1, pg 373, 2016)
    Lee, Jung Tae
    Eom, KwangSup
    Wu, Feixiang
    Kim, Hyea
    Lee, Dong Chan
    Zdyrko, Bogdan
    Yushin, Gleb
    ACS ENERGY LETTERS, 2016, 1 (04): : 869 - 869
  • [34] Evaluation of Oxide|Sulfide Heteroionic Interface Stability for Developing Solid-State Batteries with a Lithium-Metal Electrode: The Case of LLZO|Li6PS5Cl and LLZO|Li7P3S11
    Merola, Leonardo
    Singh, Vipin K.
    Palmer, Max
    Eckhardt, Janis K.
    Benz, Sebastian L.
    Fuchs, Till
    Nazar, Linda F.
    Sakamoto, Jeff
    Richter, Felix H.
    Janek, Juergen
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (40) : 54847 - 54863
  • [35] Lithium Phosphorus Sulfide Chloride-Polymer Composite via the Solution-Precipitation Process for Improving Stability toward Dendrite Formation of Li-Ion Solid Electrolyte
    Khomein, Piyachai
    Byeon, Young-Woon
    Liu, Dongye
    Yu, Jin
    Minor, Andrew M.
    Kim, Haegyeom
    Liu, Gao
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (09) : 11723 - 11730
  • [36] Improving electrochemical stability by modifying the Li6PS5Cl entailed with the mixed phase of Li6.4La3Zr1.4Ta0.6O12 composite solid electrolytes for all-solid-state lithium battery applications
    Muruganantham, Rasu
    Wu, Hsin-Wei
    Lo, Yu
    Liu, Wei-Ren
    SURFACE & COATINGS TECHNOLOGY, 2024, 479