Effect of fluorinated polymer matrix type in the performance of solid polymer electrolytes based on ionic liquids for solid-state lithium-ion batteries

被引:7
|
作者
Barbosa, Joao C. [1 ,2 ,3 ,4 ]
Pinto, Rafael S. [1 ,2 ,3 ,4 ]
Correia, Daniela M. [4 ]
Fidalgo-Marijuan, Arkaitz [5 ,6 ]
Silva, Maria M. [4 ]
Goncalves, Renato [4 ]
Lanceros-Mendez, Senentxu [1 ,2 ,3 ,5 ,7 ]
Costa, Carlos M. [1 ,2 ,3 ,8 ]
机构
[1] Univ Minho, Phys Ctr Minho, P-4710057 Braga, Portugal
[2] Univ Minho, Porto Univ CF UM UP, P-4710057 Braga, Portugal
[3] Univ Minho, Lab Phys Mat & Emergent Technol, LapMET, P-4710057 Braga, Portugal
[4] Ctr Chem, Univ Minho, P-4710057 Braga, Portugal
[5] Basque Ctr Mat Applicat & Nanostruct, BCMaterials, UPV EHU Sci Pk, Leioa 48940, Spain
[6] Univ Basque Country, UPV EHU, Dept Organ & Inorgan Chem, Leioa 48940, Spain
[7] Basque Fdn Sci, Ikerbasque, Bilbao 48009, Spain
[8] Univ Minho, Inst Sci & Innovat BioSustainabil IB S, P-4710057 Braga, Portugal
关键词
Fluorinated polymers; Polymer matrix; Ionic liquids; Solid polymer electrolyte; Solid -state batteries; POLY(VINYLIDENE FLUORIDE); ELECTROCHEMICAL PROPERTIES; CONDUCTIVITY; FLUORIDE-TRIFLUOROETHYLENE); INTERFACES; PHASE;
D O I
10.1016/j.cej.2023.147388
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Solid polymer electrolytes (SPEs) have been produced using an ionic liquid (IL) (1-Methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide - [PMPyrr][TFSI]) embedded in different fluorinated polymer matrices, including poly(vinylidene-fluoride) - PVDF, poly(vinylidene fluoride-co-hexafluoropropylene) - P(VDF-HFP), poly(vinylidene fluoride-co-trifluoroethylene) - P(VDF-TrFE) and poly(vinylidene fluoride-co-trifluoroethylene-chlorofluoroethylene) - P(VDF-TrFE-CFE), in order to evaluate the effect of the polymer chain polarity, degree of crystallinity and dielectric constant on the electrochemical properties and battery performance. It is shown that the use of the different polymers for SPE development does not have significant influence on the morphology, and thermal properties of the samples. The degree of crystallinity is significantly reduced for the P(VDF-TrFE-CFE) sample. The mechanical characteristics (Young modulus and yield strength and strain) are also associated with the crystallinity degree, being reduced for lower crystallinities. Regarding the electrochemical parameters, the samples present considered high ionic conductivity, with a maximum room temperature value of 6.2 x 10-5 S cm-1 for the P(VDF-HFP) sample. The lithium transference number for all samples show their suitability for application in lithium-ion batteries with an outstanding value of 0.71 for the P (VDF-TrFE-CFE) sample associated with the higher dielectric constant and lower degree of crystallinity of this polymer. Battery cycling tests show a maximum initial discharge capacity of 146 mAh/g for the P(VDF-TrFE) sample at room temperature and C/10 rate. Furthermore, the P(VDF-TrFE-CFE) sample presents an excellent ability to cycle at high discharge rates, achieving 91 mAh/g at 1C rate, an maintaining a high stability after 60 cycles at room temperature, showing excellent potential for application in lithium-ion batteries due to its low crystallinity and high dielectric constant. This work proves the suitability of fluorinated polymer based SPE with embedded ionic liquids for the next generation of solid-state batteries and provides a valuable insight on the role of the polymer dielectric constant and degree of crystallinity on battery performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Solid-State Polymer Electrolytes for Lithium-Ion Batteries
    Karpushkin, E. A.
    Lopatina, L. I.
    Drozhzhin, O. A.
    Sergeyev, V. G.
    MOSCOW UNIVERSITY CHEMISTRY BULLETIN, 2024, 79 (06) : 420 - 428
  • [2] Solid polymer electrolytes based on a high dielectric polymer and ionic liquids for lithium batteries
    Barbosa, Joao C.
    Pinto, Rafael S.
    Correia, Daniela M.
    Tubio, Carmen R.
    Goncalves, Renato
    Costa, Carlos M.
    Lanceros-Mendez, Senentxu
    JOURNAL OF POWER SOURCES, 2023, 585
  • [3] Solid-State Revolution: Assessing the Potential of Solid Polymer Electrolytes in Lithium-Ion Batteries
    Hadad, Saeed
    Pope, Michael A.
    Kamkar, Milad
    Tam, Kam Chiu
    ADVANCED SUSTAINABLE SYSTEMS, 2025, 9 (01):
  • [4] Polymer-in-salt solid electrolytes for lithium-ion batteries
    Yi, Chengjun
    Liu, Wenyi
    Li, Linpo
    Dong, Haoyang
    Liu, Jinping
    FUNCTIONAL MATERIALS LETTERS, 2019, 12 (06)
  • [5] Solid Polymer Electrolytes-Based Composite Cathodes for Advanced Solid-State Lithium Batteries
    Kulkarni, Uddhav
    Cho, Won-Jang
    Cho, Seok-Kyu
    Hong, Jeong-Jin
    Shejale, Kiran P.
    Yi, Gi-Ra
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2024, 41 (02) : 385 - 402
  • [6] Siloxane-based polymer electrolytes for solid-state lithium batteries
    Wang, Qinglei
    Zhang, Huanrui
    Cui, Zili
    Zhou, Qian
    Shangguan, Xuehui
    Tian, Songwei
    Zhou, Xinhong
    Cui, Guanglei
    ENERGY STORAGE MATERIALS, 2019, 23 : 466 - 490
  • [7] Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries
    Polu, Anji Reddy
    Rhee, Hee-Woo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (10) : 7212 - 7219
  • [8] Review on composite solid electrolytes for solid-state lithium-ion batteries
    Zhang, Z.
    Wang, X.
    Li, X.
    Zhao, J.
    Liu, G.
    Yu, W.
    Dong, X.
    Wang, J.
    MATERIALS TODAY SUSTAINABILITY, 2023, 21
  • [9] Polymerizable Ionic Liquids for Solid-State Polymer Electrolytes
    Loewe, Robert
    Hanemann, Thomas
    Hofmann, Andreas
    MOLECULES, 2019, 24 (02)
  • [10] Polymer-Based Solid-State Electrolytes for High-Energy-Density Lithium-Ion Batteries - Review
    Lu, Xiao
    Wang, Yumei
    Xu, Xiaoyu
    Yan, Binggong
    Wu, Tian
    Lu, Li
    ADVANCED ENERGY MATERIALS, 2023, 13 (38)