Influence of microscope settings on dislocation imaging in transmission forescattered electron imaging (t-FSEI)

被引:1
|
作者
Gutierrez-Urrutia, Ivan [1 ]
Shibata, Akinobu [1 ]
机构
[1] Natl Inst Mat Sci NIMS, Res Ctr Struct Mat, 1-2-1, Sengen, Tsukuba 3050047, Japan
关键词
Transmission forescattered electrons (t-FSE); Electron channeling contrast imaging; Dislocation imaging; Scanning electron microscope (SEM); Transmission Kikuchi diffraction (TKD); CHANNELING CONTRAST; KIKUCHI DIFFRACTION; INFORMATION DEPTH; THIN SPECIMENS; CASINO; STEM; SIMULATION; RESOLUTION; THICKNESS; CRYSTALS;
D O I
10.1016/j.matchar.2023.113147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work analyzes the influence of several microscope settings, namely, sample-forescattered electron detector (FSD) distance, and tilting conditions on the characteristics of the dislocation contrast imaged in transmission forescattered electron imaging (t-FSEI). The dislocation contrast behaviors of characteristic dislocation configurations of two Fe-based alloys, namely an & alpha;'-martensitic (body-centered cubic, bcc) Fe-33Ni alloy (wt%), and an austenitic (face-centered cubic, fcc) Fe-30Mn-6.5Al-0.3C alloy (wt%) were investigated on thin foil samples by using different on-axis transmission Kikuchi diffraction (TKD) configurations, namely t-FSEI, bright-field (BF) tFSEI and electron channeling contrast imaging (ECCI). The set-ups use transmission Kikuchi electron patterns to orient the crystal into controlled diffraction conditions. Imaging parameters such as dislocation contrast intensity and information depth are analyzed and compared to those obtained in the ECCI mode under the same microscope conditions. These effects are associated with the attenuation of Bragg scattering by high-angle scattering processes and the electron channeling mechanism, respectively. The experimental analysis sets the microscope settings for optimum dislocation imaging in t-FSEI.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Forescattered electron imaging of nanoparticles in scanning electron microscopy
    Liu, Junliang
    Lozano-Perez, Sergio
    Karamched, Phani
    Holter, Jennifer
    Wilkinson, Angus J.
    Grovenor, Chris R. M.
    MATERIALS CHARACTERIZATION, 2019, 155
  • [2] Orientation imaging in the transmission electron microscope
    Wright, SI
    Dingley, DJ
    TEXTURE AND ANISOTROPY OF POLYCRYSTALS, 1998, 273-2 : 209 - 214
  • [3] Orientation imaging in the transmission electron microscope
    Wright, S.I.
    Dingley, D.J.
    Materials Science Forum, 1998, 273-275 : 209 - 214
  • [4] Aplanatic imaging systems for the transmission electron microscope
    Mueller, Heiko
    Massmann, Ingo
    Uhlemann, Stephan
    Hartel, Peter
    Zach, Joachim
    Haider, Maximilian
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 645 (01): : 20 - 27
  • [5] Orientation Imaging Microscopy for the Transmission Electron Microscope
    David J. Dingley
    Microchimica Acta, 2006, 155 : 19 - 29
  • [6] Orientation imaging microscopy for the transmission electron microscope
    Dingley, David J.
    MICROCHIMICA ACTA, 2006, 155 (1-2) : 19 - 29
  • [7] Ultrafast imaging of plasmons in a transmission electron microscope
    Lummen, Tom T. A.
    Berruto, Gabriele
    Toma, Andrea
    Lamb, Raymond J.
    McGrouther, Damien
    Carbone, Fabrizio
    ULTRAFAST PHENOMENA AND NANOPHOTONICS XX, 2016, 9746
  • [8] Imaging magnetic structures in the transmission electron microscope
    Chapman, JN
    Kirk, KJ
    MAGNETIC HYSTERESIS IN NOVEL MAGNETIC MATERIALS, 1997, 338 : 195 - 206
  • [9] Transmission imaging on a scintillator in a scanning electron microscope
    Zuidema, Wilco
    Kruit, Pieter
    ULTRAMICROSCOPY, 2020, 218 (218)
  • [10] Direct imaging of electron density with a scanning transmission electron microscope
    Ondrej Dyck
    Jawaher Almutlaq
    David Lingerfelt
    Jacob L. Swett
    Mark P. Oxley
    Bevin Huang
    Andrew R. Lupini
    Dirk Englund
    Stephen Jesse
    Nature Communications, 14