Improved Uniqueness of Multi-breathers of the Modified Korteweg-de Vries Equation

被引:0
作者
Cote, Raphael [1 ]
Semenov, Alexander [1 ]
机构
[1] Univ Strasbourg, IRMA, UMR 7501, CNRS, F-67000 Strasbourg, France
关键词
mKdV; Breathers; Solitons; Multi-breathers; Multi-solitons; Uniqueness; WAVES;
D O I
10.1007/s10013-023-00631-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider multi-breathers of (mKdV). In Semenov (2022), a smooth multi-breather was constructed, and proved to be unique in two cases: first, in the class of super-polynomial convergence to the profile (in the spirit of (Commun. Partial Differ. Equ. 46, 2325-2385, 2021)), and second, under the assumption that all speeds of the breathers involved are positive (without rate of convergence). The goal of this short note is to improve the second result: we show that uniqueness still holds if at most one velocity is negative or zero.
引用
收藏
页码:935 / 949
页数:15
相关论文
共 12 条
  • [1] Nonlinear Stability of MKdV Breathers
    Alejo, Miguel A.
    Munoz, Claudio
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 324 (01) : 233 - 262
  • [2] On smoothness and uniqueness of multi-solitons of the non-linear Schrodinger equations
    Cote, Raphael
    Friederich, Xavier
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (12) : 2325 - 2385
  • [3] MULTI-TRAVELLING WAVES FOR THE NONLINEAR KLEIN-GORDON EQUATION
    Cote, Raphael
    Martel, Yvan
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (10) : 7461 - 7487
  • [4] MULTI-SOLITONS FOR NONLINEAR KLEIN-GORDON EQUATIONS
    Cote, Raphael
    Munoz, Claudio
    [J]. FORUM OF MATHEMATICS SIGMA, 2014, 2
  • [5] El Dika K., 2004, DYNAM PART DIFFER EQ, V1, P401
  • [6] WELL-POSEDNESS AND SCATTERING RESULTS FOR THE GENERALIZED KORTEWEG-DEVRIES EQUATION VIA THE CONTRACTION PRINCIPLE
    KENIG, CE
    PONCE, G
    VEGA, L
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (04) : 527 - 620
  • [7] Martel Y, 2005, AM J MATH, V127, P1103
  • [8] Multi solitary waves for nonlinear Schrodinger equations
    Martel, Yvan
    Merle, Frank
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (06): : 849 - 864
  • [9] MULTI-SOLITONS AND RELATED SOLUTIONS FOR THE WATER-WAVES SYSTEM
    Ming, Mei
    Rousset, Frederic
    Tzvetkov, Nikolay
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (01) : 897 - 954
  • [10] Perelman T., 1974, SOV PHYS JETP, V39, P643