Cyclic-di-AMP signalling in lactic acid bacteria

被引:6
|
作者
Turner, Mark S. [1 ,5 ]
Xiang, Yuwei [1 ]
Liang, Zhao-Xun [2 ]
Marcellin, Esteban [3 ]
Pham, Huong Thi [1 ,4 ]
机构
[1] Univ Queensland, Sch Agr & Food Sci, Brisbane, Qld 4072, Australia
[2] Nanyang Technol Univ, Sch Biol Sci, Singapore 639798, Singapore
[3] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
[4] Univ Danang, Univ Sci & Technol, Da Nang 50608, Vietnam
[5] Univ Queensland, Sch Agr & Food Sci, St Lucia Campus, Brisbane 4072, Australia
基金
澳大利亚研究理事会;
关键词
cyclic-di-AMP; lactic acid bacteria; osmotic stress; potassium; compatible solutes; BETAINE UPTAKE SYSTEM; MULTIDRUG-RESISTANCE TRANSPORTERS; DIADENYLATE CYCLASE ACTIVITY; PYRUVATE-CARBOXYLASE GENE; LACTOCOCCUS-LACTIS; STREPTOCOCCUS-PNEUMONIAE; ASPARTATE BIOSYNTHESIS; STAPHYLOCOCCUS-AUREUS; OSMOTIC REGULATION; BINDING;
D O I
10.1093/femsre/fuad025
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
This review examines components of the cyclic dimeric adenosine monophosphate signalling system in lactic acid bacteria and explores the roles this second messenger plays in growth and stress resistance. Cyclic dimeric adenosine monophosphate (cyclic-di-AMP) is a nucleotide second messenger present in Gram-positive bacteria, Gram-negative bacteria and some Archaea. The intracellular concentration of cyclic-di-AMP is adjusted in response to environmental and cellular cues, primarily through the activities of synthesis and degradation enzymes. It performs its role by binding to protein and riboswitch receptors, many of which contribute to osmoregulation. Imbalances in cyclic-di-AMP can lead to pleiotropic phenotypes, affecting aspects such as growth, biofilm formation, virulence, and resistance to osmotic, acid, and antibiotic stressors. This review focuses on cyclic-di-AMP signalling in lactic acid bacteria (LAB) incorporating recent experimental discoveries and presenting a genomic analysis of signalling components from a variety of LAB, including those found in food, and commensal, probiotic, and pathogenic species. All LAB possess enzymes for the synthesis and degradation of cyclic-di-AMP, but are highly variable with regards to the receptors they possess. Studies in Lactococcus and Streptococcus have revealed a conserved function for cyclic-di-AMP in inhibiting the transport of potassium and glycine betaine, either through direct binding to transporters or to a transcriptional regulator. Structural analysis of several cyclic-di-AMP receptors from LAB has also provided insights into how this nucleotide exerts its influence.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Replenishing the cyclic-di-AMP pool: regulation of diadenylate cyclase activity in bacteria
    Thi Huong Pham
    Liang, Zhao-Xun
    Marcellin, Esteban
    Turner, Mark S.
    CURRENT GENETICS, 2016, 62 (04) : 731 - 738
  • [2] Replenishing the cyclic-di-AMP pool: regulation of diadenylate cyclase activity in bacteria
    Thi Huong Pham
    Zhao-Xun Liang
    Esteban Marcellin
    Mark S. Turner
    Current Genetics, 2016, 62 : 731 - 738
  • [3] Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant
    Huong Thi Pham
    Nguyen Thi Hanh Nhiep
    Thu Ngoc Minh Vu
    TuAnh Ngoc Huyn
    Zhu, Yan
    Anh Le Diep Huynh
    Chakrabortti, Alolika
    Marcellin, Esteban
    Lo, Raquel
    Howard, Christopher B.
    Bansal, Nidhi
    Woodward, Joshua J.
    Liang, Zhao-Xun
    Turner, Mark S.
    PLOS GENETICS, 2018, 14 (08):
  • [4] In Vivo Detection of Cyclic-di-AMP in Staphylococcus aureus
    Mukkayyan, Nagaraja
    Poon, Raymond
    Sander, Philipp N.
    Lai, Li-Yin
    Zubair-Nizami, Zahra
    Hammond, Ming C.
    Chatterjee, Som S.
    ACS OMEGA, 2022, 7 (36): : 32749 - 32753
  • [5] Cyclic-di-GMP and cyclic-di-AMP activate the NLRP3 inflammasome
    Abdul-Sater, Ali A.
    Tattoli, Ivan
    Jin, Lei
    Grajkowski, Andrzej
    Levi, Assaf
    Koller, Beverly H.
    Allen, Irving C.
    Beaucage, Serge L.
    Fitzgerald, Katherine A.
    Ting, Jenny P. -Y.
    Cambier, John C.
    Girardin, Stephen E.
    Schindler, Christian
    EMBO REPORTS, 2013, 14 (10) : 900 - 906
  • [6] Structural and functional studies of pyruvate carboxylase regulation by cyclic di-AMP in lactic acid bacteria
    Choi, Philip H.
    Vu, Thu Minh Ngoc
    Pham, Huong Thi
    Woodward, Joshua J.
    Turner, Mark S.
    Tong, Liang
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (35) : E7226 - E7235
  • [7] Chemical proteomics reveals a second family of cyclic-di-AMP hydrolases
    Helmann, John D.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (07) : 1921 - 1922
  • [8] Gating by ionic strength and safety check by cyclic-di-AMP in the ABC transporter OpuA
    Sikkema, Hendrik R.
    van den Noort, Marco
    Rheinberger, Jan
    de Boer, Marijn
    Krepel, Sabrina T.
    Schuurman-Wolters, Gea K.
    Paulino, Cristina
    Poolman, Bert
    SCIENCE ADVANCES, 2020, 6 (47):
  • [9] Cyclic di-AMP Signaling in Bacteria
    Stuelke, Joerg
    Krueger, Larissa
    ANNUAL REVIEW OF MICROBIOLOGY, VOL 74, 2020, 2020, 74 : 159 - 179
  • [10] Homeostasis of Second Messenger Cyclic-di-AMP Is Critical for Cyanobacterial Fitness and Acclimation to Abiotic Stress
    Agostoni, Marco
    Logan-Jackson, Alshae R.
    Heinz, Emily R.
    Severin, Geoffrey B.
    Bruger, Eric L.
    Waters, Christopher M.
    Montgomery, Beronda L.
    FRONTIERS IN MICROBIOLOGY, 2018, 9