Glioma-associated microglia/macrophages (GAMs) in glioblastoma: Immune function in the tumor microenvironment and implications for immunotherapy

被引:48
作者
Lin, Chao [1 ]
Wang, Ning [1 ]
Xu, Chengyan [1 ]
机构
[1] Zhejiang Univ, Childrens Hosp, Natl Clin Res Ctr Child Hlth, Dept Neurosurg,Sch Med, Hangzhou, Zhejiang, Peoples R China
关键词
glioma; glioblastoma; glioma-associated macrophage and microglia; tumor microenvironment; immunotherapy; STEM-LIKE CELLS; GROWTH-FACTOR RECEPTOR; PERIPHERAL MACROPHAGES; MT1-MMP EXPRESSION; RESIDENT MICROGLIA; M1/M2; POLARIZATION; BRAIN; ACTIVATION; STAT3; INFILTRATION;
D O I
10.3389/fimmu.2023.1123853
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Glioma is a mixed solid tumor composed of neoplastic and non-neoplastic components. Glioma-associated macrophages and microglia (GAMs) are crucial elements of the glioma tumor microenvironment (TME), regulating tumor growth, invasion, and recurrence. GAMs are also profoundly influenced by glioma cells. Recent studies have revealed the intricate relationship between TME and GAMs. In this updated review, we provide an overview of the interaction between glioma TME and GAMs based on previous studies. We also summarize a series of immunotherapies targeting GAMs, including clinical trials and preclinical studies. Specifically, we discuss the origin of microglia in the central nervous system and the recruitment of GAMs in the glioma background. We also cover the mechanisms through which GAMs regulate various processes associated with glioma development, such as invasiveness, angiogenesis, immunosuppression, recurrence, etc. Overall, GAMs play a significant role in the tumor biology of glioma, and a better understanding of the interaction between GAMs and glioma could catalyze the development of new and effective immunotherapies for this deadly malignancy.
引用
收藏
页数:11
相关论文
共 147 条
[31]   Glioblastoma-associated circulating monocytes and the release of epidermal growth factor [J].
Fries, G ;
Perneczky, A ;
Kempski, O .
JOURNAL OF NEUROSURGERY, 1996, 85 (04) :642-647
[32]   Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype [J].
Gabrusiewicz, Konrad ;
Rodriguez, Benjamin ;
Wei, Jun ;
Hashimoto, Yuuri ;
Healy, Luke M. ;
Maiti, Sourindra N. ;
Thomas, Ginu ;
Zhou, Shouhao ;
Wang, Qianghu ;
Elakkad, Ahmed ;
Liebelt, Brandon D. ;
Yaghi, Nasser K. ;
Ezhilarasan, Ravesanker ;
Huang, Neal ;
Weinberg, Jeffrey S. ;
Prabhu, Sujit S. ;
Rao, Ganesh ;
Sawaya, Raymond ;
Langford, Lauren A. ;
Bruner, Janet M. ;
Fuller, Gregory N. ;
Bar-Or, Amit ;
Li, Wei ;
Colen, Rivka R. ;
Curran, Michael A. ;
Bhat, Krishna P. ;
Antel, Jack P. ;
Cooper, Laurence J. ;
Sulman, Erik P. ;
Heimberger, Amy B. .
JCI INSIGHT, 2016, 1 (02)
[33]   Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma [J].
Galli, R ;
Binda, E ;
Orfanelli, U ;
Cipelletti, B ;
Gritti, A ;
De Vitis, S ;
Fiocco, R ;
Foroni, C ;
Dimeco, F ;
Vescovi, A .
CANCER RESEARCH, 2004, 64 (19) :7011-7021
[34]   Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling [J].
Gao, Xinya ;
Xia, Xin ;
Li, Fanying ;
Zhang, Maolei ;
Zhou, Huangkai ;
Wu, Xujia ;
Zhong, Jian ;
Zhao, Zheng ;
Zhao, Kun ;
Liu, Dawei ;
Xiao, Feizhe ;
Xu, Qiang ;
Jiang, Tao ;
Li, Bo ;
Cheng, Shi-Yuan ;
Zhang, Nu .
NATURE CELL BIOLOGY, 2021, 23 (03) :278-+
[35]   ARPC1B promotes mesenchymal phenotype maintenance and radiotherapy resistance by blocking TRIM21-mediated degradation of IFI16 and HuR in glioma stem cells [J].
Gao, Zijie ;
Xu, Jianye ;
Fan, Yang ;
Zhang, Zongpu ;
Wang, Huizhi ;
Qian, Mingyu ;
Zhang, Ping ;
Deng, Lin ;
Shen, Jie ;
Xue, Hao ;
Zhao, Rongrong ;
Zhou, Teng ;
Guo, Xing ;
Li, Gang .
JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2022, 41 (01)
[36]   Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages [J].
Ginhoux, Florent ;
Greter, Melanie ;
Leboeuf, Marylene ;
Nandi, Sayan ;
See, Peter ;
Gokhan, Solen ;
Mehler, Mark F. ;
Conway, Simon J. ;
Ng, Lai Guan ;
Stanley, E. Richard ;
Samokhvalov, Igor M. ;
Merad, Miriam .
SCIENCE, 2010, 330 (6005) :841-845
[37]   Increase in tumor size following intratumoral injection of immunostimulatory CpG-containing oligonucleotides in a rat glioma model [J].
Ginzkey, Christian ;
Eicker, Sven O. ;
Marget, Matthias ;
Krause, Joerg ;
Brecht, Stephan ;
Westphal, Manfred ;
Hugo, Hans H. ;
Mehdorn, H. M. ;
Steinmann, Joerg ;
Hamel, Wolfgang .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2010, 59 (04) :541-551
[38]   Molecular profiling of the tumor microenvironment in glioblastoma patients: correlation of microglia/macrophage polarization state with metalloprotease expression profiles and survival [J].
Gjorgjevski, Marko ;
Hannen, Ricarda ;
Carl, Barbara ;
Li, Yu ;
Landmann, Emilie ;
Buchholz, Malte ;
Bartsch, Joerg W. ;
Nimsky, Christopher .
BIOSCIENCE REPORTS, 2019, 39
[39]   Most clinical anti-EGFR antibodies do not neutralize both wtEGFR and EGFRvIII activation in glioma [J].
Greenall, Sameer A. ;
McKenzie, Mathew ;
Seminova, Ekatarina ;
Dolezal, Olan ;
Pearce, Lesley ;
Bentley, John ;
Kuchibhotla, Mani ;
Chen, Shengnan C. ;
McDonald, Kerrie L. ;
Kornblum, Harley ;
Endersby, Raelene ;
Adams, Timothy E. ;
Johns, Terrance G. .
NEURO-ONCOLOGY, 2019, 21 (08) :1016-1027
[40]  
Groot John de, 2022, CNS Oncol, V11, pCNS87, DOI [10.2217/cns-2022-0005, 10.2217/cns-2022-0005]