Lattice strain and interfacial engineering of a Bi-based electrocatalyst for highly selective CO2 electroreduction to formate

被引:21
作者
Wei, Xiaoqian [1 ]
Li, Zijian [2 ]
Jang, Haeseong [3 ,4 ]
Kim, Min Gyu [3 ]
Qin, Qing [1 ]
Liu, Xien [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Chem Engn, Qingdao 266042, Peoples R China
[2] City Univ Hong Kong, Dept Chem, Hong Kong, Peoples R China
[3] Pohang Accelerator Lab PAL, Beamline Res Div, Pohang 37673, South Korea
[4] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
electrocatalyst; lattice strain; heterostructure; carbon dioxide reduction; formate; ELECTROCHEMICAL REDUCTION;
D O I
10.1007/s40843-022-2346-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Surface strain tuning in a coupled heterostructure efficiently engineers the catalytic performance of heterogeneous catalysts by altering the electronic structures and boosting electron transport. Generally, Bi-based catalysts are more favorable than ZnO for CO2 electroreduction to formate, but Bi is much more costly than Zn. Herein, a new Bi2O2CO3/ZnO heterojunction catalyst with porous nanoplate morphology is synthesized through a hexadecyl trimethyl ammonium bromide-templated hydrothermal reaction for a highly efficient catalytic CO2 reduction reaction (CO2RR) to produce formate. The Bi2O2CO3/ZnO catalyst shows a maximum Faradaic efficiency of 92% for formate production at -1.0 V vs. reversible hydrogen electrode (RHE) and a large partial current density of -200 mA mg(Bi)(-1) at -1.2 V vs. RHE. More importantly, the mass activity of Bi2O2CO3/ZnO normalized by Bi mass is an approximately 3.1-fold enhancement over that of the pristine Bi2O2CO3 at -1.2 V vs. RHE. By coupling X-ray photoelectron spectroscopy and adsorption spectroscopy measurements, the charge transfer from the Zn atom to the Bi atom through a heterogeneous interface results in an electron-enriched Bi2O2CO3 surface, which facilitates CO2 capture and activation. Meanwhile, compressive stress produced on the catalyst surface helps optimize the adsorption energy of the reaction intermediate, synergistically enhancing the catalytic selectivity and activity of Bi2O2CO3/ZnO for electrochemical CO2 reduction to formate.
引用
收藏
页码:1398 / 1406
页数:9
相关论文
共 56 条
[1]   Photocatalytic dye degradation by magnetic XFe2O3 (X: Co, Zn, Cr, Sr, Ni, Cu, Ba, Bi, and Mn) nanocomposites under visible light: A cost efficiency comparison [J].
Balarabe, Bachir Yaou ;
Bowmik, Sagar ;
Ghosh, Avijit ;
Maity, Prasenjit .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 562
[2]   Boosting the Productivity of Electrochemical CO2 Reduction to Multi-Carbon Products by Enhancing CO2 Diffusion through a Porous Organic Cage [J].
Chen, Chunjun ;
Yan, Xupeng ;
Wu, Yahui ;
Liu, Shoujie ;
Zhang, Xiudong ;
Sun, Xiaofu ;
Zhu, Qinggong ;
Wu, Haihong ;
Han, Buxing .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (23)
[3]   Active Site Engineering in Porous Electrocatalysts [J].
Chen, Hui ;
Liang, Xiao ;
Liu, Yipu ;
Ai, Xuan ;
Asefa, Tewodros ;
Zou, Xiaoxin .
ADVANCED MATERIALS, 2020, 32 (44)
[4]   Synergistically electronic tuning of metalloid CdSe nanorods for enhanced electrochemical CO2 reduction [J].
Chen, Tao ;
Liu, Tianyang ;
Shen, Xinyi ;
Zhang, Wei ;
Ding, Tao ;
Wang, Lan ;
Liu, Xiaokang ;
Cao, Linlin ;
Zhu, Wenkun ;
Li, Yafei ;
Yao, Tao .
SCIENCE CHINA-MATERIALS, 2021, 64 (12) :2997-3006
[5]   Porously Reduced 2-Dimensional Bi2O2CO3 Petals for Strain-Mediated Electrochemical CO2 Reduction to HCOOH [J].
Cho, Won Seok ;
Hong, Dae Myung ;
Dong, Wan Jae ;
Lee, Tae Hyung ;
Yoo, Chul Jong ;
Lee, Donghwa ;
Jang, Ho Won ;
Lee, Jong-Lam .
ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (01)
[6]   Strain-Engineering of Bi12O17Br2 Nanotubes for Boosting Photocatalytic CO2 Reduction [J].
Di, Jun ;
Song, Pin ;
Zhu, Chao ;
Chen, Chao ;
Xiong, Jun ;
Duan, Meilin ;
Long, Ran ;
Zhou, Weigiang ;
Xu, Manzhang ;
Kang, Lixing ;
Lin, Bo ;
Liu, Daobin ;
Chen, Shuangming ;
Liu, Chuntai ;
Li, Huaming ;
Zhao, Yanli ;
Li, Shuzhou ;
Yan, Qingyu ;
Song, Li ;
Liu, Zheng .
ACS MATERIALS LETTERS, 2020, 2 (08) :1025-1032
[7]   Bi2O3/BiO2 Nanoheterojunction for Highly Efficient Electrocatalytic CO2 Reduction to Formate [J].
Feng, Xuezhen ;
Zou, Haiyuan ;
Zheng, Renji ;
Wei, Wenfei ;
Wang, Ranhao ;
Zou, Wensong ;
Lim, Gukhyun ;
Hong, Jihyun ;
Duan, Lele ;
Chen, Hong .
NANO LETTERS, 2022, 22 (04) :1656-1664
[8]   Enhancing CO2 Electroreduction with the Metal-Oxide Interface [J].
Gao, Dunfeng ;
Zhang, Yi ;
Zhou, Zhiwen ;
Cai, Fan ;
Zhao, Xinfei ;
Huang, Wugen ;
Li, Yangsheng ;
Zhu, Junfa ;
Liu, Ping ;
Yang, Fan ;
Wang, Guoxiong ;
Bao, Xinhe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (16) :5652-5655
[9]   Oxygen Vacancies in ZnO Nanosheets Enhance CO2 Electrochemical Reduction to CO [J].
Geng, Zhigang ;
Kong, Xiangdong ;
Chen, Weiwei ;
Su, Hongyang ;
Liu, Yan ;
Cai, Fan ;
Wang, Guoxiong ;
Zeng, Jie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (21) :6054-6059
[10]   Understanding of Strain Effects in the Electrochemical Reduction of CO2: Using Pd Nanostructures as an Ideal Platform [J].
Huang, Hongwen ;
Jia, Huanhuan ;
Liu, Zhao ;
Gao, Pengfei ;
Zhao, Jiangtao ;
Luo, Zhenlin ;
Yang, Jinlong ;
Zeng, Jie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (13) :3594-3598