Spectral collocation method for solving multi-term fractional integro-differential equations with nonlinear integral

被引:2
|
作者
Kang, Yong-Suk [1 ]
Jo, Son-Hyang [1 ]
机构
[1] Kim Il Sung Univ, Fac Math, Pyongyang, North Korea
关键词
Spectral collocation method; Fractional integro-differential equations; Nonlinear integral; Caputo derivative; Gauss-quadrature; NUMERICAL-SOLUTION; DIFFERENTIAL-EQUATIONS; CONVERGENCE ANALYSIS; SCHEME;
D O I
10.1007/s40096-022-00487-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we solve the multi-term fractional integro-differential equations with variable coefficients and nonlinear integral using spectral collocation method. We construct a spectral collocation algorithm and provide the rigorous error analysis of our method for the equations with variable coefficients and nonlinear integral. Finally, we give some numerical examples to show the convergence rate and efficiency of the presented method.
引用
收藏
页码:91 / 106
页数:16
相关论文
共 50 条
  • [31] Shifted fractional Legendre spectral collocation technique for solving fractional stochastic Volterra integro-differential equations
    Doha, E. H.
    Abdelkawy, M. A.
    Amin, A. Z. M.
    Lopes, Antonio M.
    ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 2) : 1363 - 1373
  • [32] Shifted fractional Legendre spectral collocation technique for solving fractional stochastic Volterra integro-differential equations
    E. H. Doha
    M. A. Abdelkawy
    A. Z. M. Amin
    António M. Lopes
    Engineering with Computers, 2022, 38 : 1363 - 1373
  • [33] An improved collocation method for solving a fractional integro-differential equation
    Zhang, Xiaoguang
    Du, Hong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (01):
  • [34] Bernoulli polynomials collocation method for multi-term fractional differential equations
    Chen, Xumei
    Lei, Siyi
    Wang, Linjun
    Wang, Linjun (wanglinjun@ujs.edu.cn), 2020, International Association of Engineers (50) : 699 - 706
  • [35] An improved collocation method for solving a fractional integro-differential equation
    Xiaoguang Zhang
    Hong Du
    Computational and Applied Mathematics, 2021, 40
  • [36] MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS AND INCLUSIONS WITH GENERALIZED NONLOCAL FRACTIONAL INTEGRO-DIFFERENTIAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Alsaedi, Ahmed
    Alghanmi, Madeaha
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2018,
  • [37] Fully spectral collocation method for nonlinear parabolic partial integro-differential equations
    Fakhar-Izadi, Farhad
    Dehghan, Mehdi
    APPLIED NUMERICAL MATHEMATICS, 2018, 123 : 99 - 120
  • [38] A method for solving nonlinear integro-differential equations
    Ben Zitoun, Feyed
    Cherruault, Yves
    KYBERNETES, 2012, 41 (1-2) : 35 - 50
  • [39] Collocation Method for Solving Two-Dimensional Fractional Volterra Integro-Differential Equations
    S. Kazemi
    A. Tari
    Iranian Journal of Science and Technology, Transactions A: Science, 2022, 46 : 1629 - 1639
  • [40] Collocation Method for Solving Two-Dimensional Fractional Volterra Integro-Differential Equations
    Kazemi, S.
    Tari, A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2022, 46 (06): : 1629 - 1639