Spectral collocation method for solving multi-term fractional integro-differential equations with nonlinear integral

被引:2
|
作者
Kang, Yong-Suk [1 ]
Jo, Son-Hyang [1 ]
机构
[1] Kim Il Sung Univ, Fac Math, Pyongyang, North Korea
关键词
Spectral collocation method; Fractional integro-differential equations; Nonlinear integral; Caputo derivative; Gauss-quadrature; NUMERICAL-SOLUTION; DIFFERENTIAL-EQUATIONS; CONVERGENCE ANALYSIS; SCHEME;
D O I
10.1007/s40096-022-00487-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we solve the multi-term fractional integro-differential equations with variable coefficients and nonlinear integral using spectral collocation method. We construct a spectral collocation algorithm and provide the rigorous error analysis of our method for the equations with variable coefficients and nonlinear integral. Finally, we give some numerical examples to show the convergence rate and efficiency of the presented method.
引用
收藏
页码:91 / 106
页数:16
相关论文
共 50 条
  • [1] Spectral collocation method for solving multi-term fractional integro-differential equations with nonlinear integral
    Yong-Suk Kang
    Son-Hyang Jo
    Mathematical Sciences, 2024, 18 : 91 - 106
  • [2] A Jacobi Spectral Collocation Method for Solving Fractional Integro-Differential Equations
    Qingqing Wu
    Zhongshu Wu
    Xiaoyan Zeng
    Communications on Applied Mathematics and Computation, 2021, 3 : 509 - 526
  • [3] A Jacobi Spectral Collocation Method for Solving Fractional Integro-Differential Equations
    Wu, Qingqing
    Wu, Zhongshu
    Zeng, Xiaoyan
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (03) : 509 - 526
  • [4] Application of the collocation method for solving nonlinear fractional integro-differential equations
    Eslahchi, M. R.
    Dehghan, Mehdi
    Parvizi, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 257 : 105 - 128
  • [5] Multi-term fractional oscillation integro-differential equations
    Phung, Tran Dinh
    Duc, Dinh Thanh
    Tuan, Vu Kim
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (04) : 1713 - 1733
  • [6] Spline Collocation for Multi-Term Fractional Integro-Differential Equations with Weakly Singular Kernels
    Pedas, Arvet
    Vikerpuur, Mikk
    FRACTAL AND FRACTIONAL, 2021, 5 (03)
  • [7] Multi-term fractional oscillation integro-differential equations
    Tran Dinh Phung
    Dinh Thanh Duc
    Vu Kim Tuan
    Fractional Calculus and Applied Analysis, 2022, 25 : 1713 - 1733
  • [8] Legendre spectral collocation method for solving nonlinear fractional Fredholm integro-differential equations with convergence analysis
    Tedjani, A. H.
    Amin, A. Z.
    Abdel-Aty, Abdel-Haleem
    Abdelkawy, M. A.
    Mahmoud, Mona
    AIMS MATHEMATICS, 2024, 9 (04): : 7973 - 8000
  • [9] The spectral collocation method for solving a fractional integro-differential equation
    Wu, Chuanhua
    Wang, Ziqiang
    AIMS MATHEMATICS, 2022, 7 (06): : 9577 - 9587
  • [10] Existence and uniqueness of solutions for multi-term nonlinear fractional integro-differential equations
    Baleanu, Dumitru
    Nazemi, Sayyedeh Zahra
    Rezapour, Shahram
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,