Rapid classification of epidemiologically relevant age categories of the malaria vector, Anopheles funestus

被引:3
作者
Mwanga, Emmanuel P. [1 ,2 ]
Siria, Doreen J. [1 ,2 ]
Mshani, Issa H. [1 ,2 ]
Mwinyi, Sophia H. [1 ,2 ]
Abbasi, Said [1 ]
Jimenez, Mario Gonzalez [2 ,3 ]
Wynne, Klaas [3 ]
Baldini, Francesco [2 ]
Babayan, Simon A. [2 ]
Okumu, Fredros O. [1 ,2 ,4 ,5 ]
机构
[1] Ifakara Hlth Inst, Environm Hlth & Ecol Sci Dept, POB 53, Morogoro, Tanzania
[2] Univ Glasgow, Sch Biodivers One Hlth & Vet Med, Glasgow G12 8QQ, Scotland
[3] Univ Glasgow, Sch Chem, Glasgow G12 8QQ, Scotland
[4] Univ Witwatersrand, Fac Hlth Sci, Sch Publ Hlth, Johannesburg, South Africa
[5] Nelson Mandela African Inst Sci & Technol, Sch Life Sci & Bioengn, POB 447, Arusha, Tanzania
基金
英国医学研究理事会;
关键词
Malaria; Anopheles funestus; Deep learning; Machine learning; Ifakara Health Institute; Mid-infrared spectroscopy; INSECTICIDE RESISTANCE; PLASMODIUM-FALCIPARUM; GAMBIAE;
D O I
10.1186/s13071-024-06209-5
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
BackgroundAccurately determining the age and survival probabilities of adult mosquitoes is crucial for understanding parasite transmission, evaluating the effectiveness of control interventions and assessing disease risk in communities. This study was aimed at demonstrating the rapid identification of epidemiologically relevant age categories of Anopheles funestus, a major Afro-tropical malaria vector, through the innovative combination of infrared spectroscopy and machine learning, instead of the cumbersome practice of dissecting mosquito ovaries to estimate age based on parity status. MethodsAnopheles funestus larvae were collected in rural south-eastern Tanzania and reared in an insectary. Emerging adult females were sorted by age (1-16 days old) and preserved using silica gel. Polymerase chain reaction (PCR) confirmation was conducted using DNA extracted from mosquito legs to verify the presence of An. funestus and to eliminate undesired mosquitoes. Mid-infrared spectra were obtained by scanning the heads and thoraces of the mosquitoes using an attenuated total reflection-Fourier transform infrared (ATR-FT-IR) spectrometer. The spectra (N = 2084) were divided into two epidemiologically relevant age groups: 1-9 days (young, non-infectious) and 10-16 days (old, potentially infectious). The dimensionality of the spectra was reduced using principal component analysis, and then a set of machine learning and multi-layer perceptron (MLP) models were trained using the spectra to predict the mosquito age categories. ResultsThe best-performing model, XGBoost, achieved overall accuracy of 87%, with classification accuracy of 89% for young and 84% for old An. funestus. When the most important spectral features influencing the model performance were selected to train a new model, the overall accuracy increased slightly to 89%. The MLP model, utilizing the significant spectral features, achieved higher classification accuracy of 95% and 94% for the young and old An. funestus, respectively. After dimensionality reduction, the MLP achieved 93% accuracy for both age categories. ConclusionsThis study shows how machine learning can quickly classify epidemiologically relevant age groups of An. funestus based on their mid-infrared spectra. Having been previously applied to An. gambiae, An. arabiensis and An. coluzzii, this demonstration on An. funestus underscores the potential of this low-cost, reagent-free technique for widespread use on all the major Afro-tropical malaria vectors. Future research should demonstrate how such machine-derived age classifications in field-collected mosquitoes correlate with malaria in human populations.
引用
收藏
页数:9
相关论文
共 60 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Systematic review of the status of pfhrp2 and pfhrp3 gene deletion, approaches and methods used for its estimation and reporting in Plasmodium falciparum populations in Africa: review of published studies 2010-2019 [J].
Agaba, Bosco B. ;
Yeka, Adoke ;
Nsobya, Sam ;
Arinaitwe, Emmanuel ;
Nankabirwa, Joaniter ;
Opigo, Jimmy ;
Mbaka, Paul ;
Lim, Chae Seung ;
Kalyango, Joan N. ;
Karamagi, Charles ;
Kamya, Moses R. .
MALARIA JOURNAL, 2019, 18 (01)
[3]  
[Anonymous], 2021, World malaria report 2021, DOI DOI 10.1016/S0140-6736(19)31096-7
[4]  
[Anonymous], 2022, World malaria report 2022
[5]   First evidence of the deletion in the pfhrp2 and pfhrp3 genes in Plasmodium falciparum from Equatorial Guinea [J].
Berzosa, Pedro ;
Gonzalez, Vicenta ;
Taravillo, Laura ;
Mayor, Alfredo ;
Romay-Barja, Maria ;
Garcia, Luz ;
Ncogo, Policarpo ;
Riloha, Matilde ;
Benito, Agustin .
MALARIA JOURNAL, 2020, 19 (01)
[6]   The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015 [J].
Bhatt, S. ;
Weiss, D. J. ;
Cameron, E. ;
Bisanzio, D. ;
Mappin, B. ;
Dalrymple, U. ;
Battle, K. E. ;
Moyes, C. L. ;
Henry, A. ;
Eckhoff, P. A. ;
Wenger, E. A. ;
Briet, O. ;
Penny, M. A. ;
Smith, T. A. ;
Bennett, A. ;
Yukich, J. ;
Eisele, T. P. ;
Griffin, J. T. ;
Fergus, C. A. ;
Lynch, M. ;
Lindgren, F. ;
Cohen, J. M. ;
Murray, C. L. J. ;
Smith, D. L. ;
Hay, S. I. ;
Cibulskis, R. E. ;
Gething, P. W. .
NATURE, 2015, 526 (7572) :207-+
[7]   Molecular surveillance reveals the presence of pfhrp2 and pfhrp3 gene deletions in Plasmodium falciparum parasite populations in Uganda, 2017-2019 [J].
Bosco, Agaba B. ;
Anderson, Karen ;
Gresty, Karryn ;
Prosser, Christiane ;
Smith, David ;
Nankabirwa, Joaniter, I ;
Nsobya, Sam ;
Yeka, Adoke ;
Opigo, Jimmy ;
Gonahasa, Samuel ;
Namubiru, Rhoda ;
Arinaitwe, Emmanuel ;
Mbaka, Paul ;
Kissa, John ;
Won, Sungho ;
Lee, Bora ;
Lim, Chae Seung ;
Karamagi, Charles ;
Cunningham, Jane ;
Nakayaga, Joan K. ;
Kamya, Moses R. ;
Cheng, Qin .
MALARIA JOURNAL, 2020, 19 (01)
[8]  
Burns D.A., 2008, HDB NEAR INFRARED AN, DOI [10.1201/9781420007374, DOI 10.1201/9781420007374]
[9]   'Nature or nurture': survival rate, oviposition interval, and possible gonotrophic discordance among South East Asian anophelines [J].
Charlwood, J. Derek ;
Nenhep, Somalay ;
Sovannaroth, Siv ;
Morgan, John C. ;
Hemingway, Janet ;
Chitnis, Nakul ;
Briet, Olivier J. T. .
MALARIA JOURNAL, 2016, 15
[10]   'We like it wet': a comparison between dissection techniques for the assessment of parity in Anopheles arabiensis and determination of sac stage in mosquitoes alive or dead on collection [J].
Charlwood, Jacques D. ;
Tomas, Erzelia V. E. ;
Andegiorgish, Amanuel K. ;
Mihreteab, Selam ;
LeClair, Corey .
PEERJ, 2018, 6