共 26 条
Network Security Detection Method Based on Abnormal Traffic Detection
被引:0
作者:

Xiao, Tao
论文数: 0 引用数: 0
h-index: 0
机构:
State Grid Jiangxi Elect Power Co Ltd, Training Ctr, Nanchang 330013, Peoples R China State Grid Jiangxi Elect Power Co Ltd, Training Ctr, Nanchang 330013, Peoples R China

Ke, Yang
论文数: 0 引用数: 0
h-index: 0
机构:
State Grid Jiangxi Elect Power Co Ltd, Training Ctr, Nanchang 330013, Peoples R China State Grid Jiangxi Elect Power Co Ltd, Training Ctr, Nanchang 330013, Peoples R China

Hu, Yiwen
论文数: 0 引用数: 0
h-index: 0
机构:
State Grid Jiangxi Elect Power Co Ltd, Training Ctr, Nanchang 330013, Peoples R China State Grid Jiangxi Elect Power Co Ltd, Training Ctr, Nanchang 330013, Peoples R China

Wang, Hongya
论文数: 0 引用数: 0
h-index: 0
机构:
State Grid Jiangxi Elect Power Co Ltd, Training Ctr, Nanchang 330013, Peoples R China State Grid Jiangxi Elect Power Co Ltd, Training Ctr, Nanchang 330013, Peoples R China
机构:
[1] State Grid Jiangxi Elect Power Co Ltd, Training Ctr, Nanchang 330013, Peoples R China
关键词:
Abnormal traffic;
network security detection;
data dimensionality reduction;
flow characteristics;
traffic capture;
alarm module;
D O I:
10.14569/IJACSA.2023.01411111
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
discover potential risks and vulnerabilities in the network in time and ensure the safe operation of the network, a network security detection method based on abnormal traffic detection is studied. Construct network security detection architecture from several aspects, including the front-end interface module, control center module, network status extraction module, anomaly detection module, alarm module, and database module. Use NetFlow technology to capture network traffic from the network in the form of flow, and use the KNN algorithm in the traffic filtering submodule to filter network traffic packets and eliminate duplicate traffic data. After filtering traffic, the traffic data is transmitted to the feature selection sub-module. PCA-TS algorithm is used to reduce the dimension of the network traffic data and select the network traffic characteristics, and then it is input into the SVM classifier. The improved SVM multi-classification algorithm is used to classify normal and abnormal traffic, complete abnormal traffic detection, and achieve network security detection. Experimental results show that the time for feature selection of this method does not exceed 3.0s, and the G score in the detection process also remains above 0.70, indicating that this method has strong network security detection capability.
引用
收藏
页码:1093 / 1103
页数:11
相关论文
共 26 条
- [1] Network optimization using defender system in cloud computing security based intrusion detection system withgame theory deep neural network (IDSGT-DNN)[J]. PATTERN RECOGNITION LETTERS, 2022, 156 : 142 - 151Balamurugan, E.论文数: 0 引用数: 0 h-index: 0机构: Univ Africa, Dept Comp & Math Sci, Toru Orua, Nigeria Univ Africa, Dept Comp & Math Sci, Toru Orua, NigeriaMehbodniya, Abolfazl论文数: 0 引用数: 0 h-index: 0机构: Kuwait Coll Sci & Technol KCST, Dept Elect & Commun, 7th Ring Rd, Kuwait, Kuwait Univ Africa, Dept Comp & Math Sci, Toru Orua, NigeriaKariri, Elham论文数: 0 引用数: 0 h-index: 0机构: Prince Sattam Bin Abdul Aziz Univ, Coll Comp Sci & Engn, Al Kharj, Saudi Arabia Univ Africa, Dept Comp & Math Sci, Toru Orua, NigeriaYadav, Kusum论文数: 0 引用数: 0 h-index: 0机构: Univ Hail, Coll Comp Sci & Engn, Hail, Saudi Arabia Univ Africa, Dept Comp & Math Sci, Toru Orua, NigeriaKumar, Anil论文数: 0 引用数: 0 h-index: 0机构: DIT Univ, Sch Comp, Data Sci Res Grp, Dehra Dun, Uttarakhand, India Univ Africa, Dept Comp & Math Sci, Toru Orua, NigeriaHaq, Mohd Anul论文数: 0 引用数: 0 h-index: 0机构: Majmaah Univ, Coll Comp & Informat Sci, Dept Comp Sci, Almajmaah 11952, Saudi Arabia Univ Africa, Dept Comp & Math Sci, Toru Orua, Nigeria
- [2] A Novel Intrusion Detection System for Internet of Things Network Security[J]. JOURNAL OF INFORMATION TECHNOLOGY RESEARCH, 2021, 14 (03) : 20 - 37Bediya, Arun Kumar论文数: 0 引用数: 0 h-index: 0机构: Jamia Millia Islamia, New Delhi, India Jamia Millia Islamia, New Delhi, IndiaKumar, Rajendra论文数: 0 引用数: 0 h-index: 0机构: Jamia Millia Islamia, New Delhi, India Jamia Millia Islamia, New Delhi, India
- [3] Prediction of Hypertension Outcomes Based on Gain Sequence Forward Tabu Search Feature Selection and XGBoost[J]. DIAGNOSTICS, 2021, 11 (05)Chang, Wenbing论文数: 0 引用数: 0 h-index: 0机构: Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R ChinaJi, Xinpeng论文数: 0 引用数: 0 h-index: 0机构: Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R ChinaXiao, Yiyong论文数: 0 引用数: 0 h-index: 0机构: Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R ChinaZhang, Yue论文数: 0 引用数: 0 h-index: 0机构: Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R ChinaChen, Bang论文数: 0 引用数: 0 h-index: 0机构: Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R ChinaLiu, Houxiang论文数: 0 引用数: 0 h-index: 0机构: Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R ChinaZhou, Shenghan论文数: 0 引用数: 0 h-index: 0机构: Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China
- [4] Study on network security intrusion target detection method in big data environment[J]. INTERNATIONAL JOURNAL OF INTERNET PROTOCOL TECHNOLOGY, 2021, 14 (04) : 240 - 247Chen, Jia论文数: 0 引用数: 0 h-index: 0机构: Puyang Vocat & Tech Coll, Puyang 457000, Henan, Peoples R China Puyang Vocat & Tech Coll, Puyang 457000, Henan, Peoples R ChinaMiao, Yingkai论文数: 0 引用数: 0 h-index: 0机构: Puyang Vocat & Tech Coll, Puyang 457000, Henan, Peoples R China Puyang Vocat & Tech Coll, Puyang 457000, Henan, Peoples R China
- [5] FRACTAL CHARACTERISTICS OF NETWORK TRAFFIC AND ITS CORRELATION WITH NETWORK SECURITY[J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (02)Ding, Caichang论文数: 0 引用数: 0 h-index: 0机构: Hubei Polytech Univ, Sch Comp Sci, Huangshi 435003, Hubei, Peoples R China Hubei Polytech Univ, Sch Comp Sci, Huangshi 435003, Hubei, Peoples R ChinaChen, Yiqin论文数: 0 引用数: 0 h-index: 0机构: Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing 210094, Peoples R China Hubei Polytech Univ, Sch Comp Sci, Huangshi 435003, Hubei, Peoples R ChinaLiu, Zhiyuan论文数: 0 引用数: 0 h-index: 0机构: Hubei Polytech Univ, Sch Comp Sci, Huangshi 435003, Hubei, Peoples R China Hubei Polytech Univ, Sch Comp Sci, Huangshi 435003, Hubei, Peoples R ChinaAlshehri, Ahmed Mohammed论文数: 0 引用数: 0 h-index: 0机构: King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia Hubei Polytech Univ, Sch Comp Sci, Huangshi 435003, Hubei, Peoples R ChinaLiu, Tianyin论文数: 0 引用数: 0 h-index: 0机构: Hubei Polytech Univ, Sch Comp Sci, Huangshi 435003, Hubei, Peoples R China Hubei Polytech Univ, Sch Comp Sci, Huangshi 435003, Hubei, Peoples R China
- [6] AnoGLA: An efficient scheme to improve network anomaly detection[J]. JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2022, 66Ding, Qingfeng论文数: 0 引用数: 0 h-index: 0机构: Shanghai Univ Elect Power, Sch Comp Sci & Technol, Shanghai 201306, Peoples R China Shanghai Univ Elect Power, Sch Comp Sci & Technol, Shanghai 201306, Peoples R ChinaLi, Jinguo论文数: 0 引用数: 0 h-index: 0机构: Shanghai Univ Elect Power, Sch Comp Sci & Technol, Shanghai 201306, Peoples R China Shanghai Univ Elect Power, Sch Comp Sci & Technol, Shanghai 201306, Peoples R China
- [7] A novel and highly efficient botnet detection algorithm based on network traffic analysis of smart systems[J]. INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2022, 18 (03)Duan, Li论文数: 0 引用数: 0 h-index: 0机构: Beijing Jiaotong Univ, Beijing Key Lab Secur & Privacy Intelligent Trans, Beijing, Peoples R China Beijing Jiaotong Univ, Beijing Key Lab Secur & Privacy Intelligent Trans, Beijing, Peoples R ChinaZhou, Jingxian论文数: 0 引用数: 0 h-index: 0机构: Civil Aviat Univ China, Informat Secur Evaluat Ctr, Tianjin 300300, Peoples R China Beijing Jiaotong Univ, Beijing Key Lab Secur & Privacy Intelligent Trans, Beijing, Peoples R ChinaWu, You论文数: 0 引用数: 0 h-index: 0机构: Civil Aviat Univ China, Sinoeuropean Inst Aviat Engn, Tianjin, Peoples R China Beijing Jiaotong Univ, Beijing Key Lab Secur & Privacy Intelligent Trans, Beijing, Peoples R ChinaXu, Wenyao论文数: 0 引用数: 0 h-index: 0机构: Beijing Jiaotong Univ, Beijing Key Lab Secur & Privacy Intelligent Trans, Beijing, Peoples R China Beijing Jiaotong Univ, Beijing Key Lab Secur & Privacy Intelligent Trans, Beijing, Peoples R China
- [8] Cyber Security Intrusion Detection for Agriculture 4.0: Machine Learning-Based Solutions, Datasets, and Future Directions[J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (03) : 407 - 436论文数: 引用数: h-index:机构:Shu, Lei论文数: 0 引用数: 0 h-index: 0机构: Nanjing Agr Univ, Coll Artificial Intelligence, Nanjing 210031, Peoples R China Univ Lincoln, Sch Engn, Lincoln LN6 7TS, England Guelma Univ, Dept Comp Sci, BP 401, Guelma 24000, Algeria论文数: 引用数: h-index:机构:Yang, Xing论文数: 0 引用数: 0 h-index: 0机构: Nanjing Agr Univ, Coll Engn, Nanjing 210031, Peoples R China Guelma Univ, Dept Comp Sci, BP 401, Guelma 24000, Algeria
- [9] Injection attack detection using machine learning for smart IoT applications[J]. PHYSICAL COMMUNICATION, 2022, 52Gaber, Tarek论文数: 0 引用数: 0 h-index: 0机构: Univ Salford, Sch Sci Engn & Environm, Salford, Lancs, England Suez Canal Univ, Fac Comp & Informat, Ismailia 41522, Egypt Sci Res Grp Egypt SRGE, Giza, Egypt Univ Salford, Sch Sci Engn & Environm, Salford, Lancs, EnglandEl-Ghamry, Amir论文数: 0 引用数: 0 h-index: 0机构: Mansoura Univ, Fac Comp & Informat, Mansoura, Egypt Sci Res Grp Egypt SRGE, Giza, Egypt Univ Salford, Sch Sci Engn & Environm, Salford, Lancs, EnglandHassanien, Aboul Ella论文数: 0 引用数: 0 h-index: 0机构: Cairo Univ, Fac Comp & Artificial Intelligence, Cairo 12631, Egypt Sci Res Grp Egypt SRGE, Giza, Egypt Univ Salford, Sch Sci Engn & Environm, Salford, Lancs, England
- [10] Federated user activity analysis via network traffic and deep neural network in mobile wireless networks[J]. PHYSICAL COMMUNICATION, 2021, 48Guo, Liang论文数: 0 引用数: 0 h-index: 0机构: China Acad Informat & Commun Technol, Beijing 100191, Peoples R China China Acad Informat & Commun Technol, Beijing 100191, Peoples R ChinaWang, Shaopeng论文数: 0 引用数: 0 h-index: 0机构: China Acad Informat & Commun Technol, Beijing 100191, Peoples R China China Acad Informat & Commun Technol, Beijing 100191, Peoples R ChinaYin, Jie论文数: 0 引用数: 0 h-index: 0机构: Jiangsu Police Inst, Dept Network Secur Corps, Nanjing 210031, Peoples R China China Acad Informat & Commun Technol, Beijing 100191, Peoples R ChinaWang, Yu论文数: 0 引用数: 0 h-index: 0机构: Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Peoples R China China Acad Informat & Commun Technol, Beijing 100191, Peoples R ChinaYang, Jie论文数: 0 引用数: 0 h-index: 0机构: Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Peoples R China China Acad Informat & Commun Technol, Beijing 100191, Peoples R ChinaGui, Guan论文数: 0 引用数: 0 h-index: 0机构: Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Peoples R China China Acad Informat & Commun Technol, Beijing 100191, Peoples R China