Anisotropic Liouville type theorem for the MHD system in Rn

被引:4
作者
Chae, Dongho [1 ]
机构
[1] Chung Ang Univ, Dept Math, Seoul 156756, South Korea
基金
新加坡国家研究基金会;
关键词
NAVIER-STOKES EQUATIONS;
D O I
10.1063/5.0159958
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we study the Liouville type problem for stationary magnetohydrodynamic equations in R-n. We show that under certain anisotropic integrability conditions on the components of the velocity and the magnetic field the solution is trivial.
引用
收藏
页数:5
相关论文
共 15 条
[1]   Anisotropic Liouville type theorem for the stationary Navier-Stokes equations in R3 [J].
Chae, Dongho .
APPLIED MATHEMATICS LETTERS, 2023, 142
[2]   On Liouville type theorems for the steady Navier-Stokes equations in R3 [J].
Chae, Dongho ;
Wolf, Joerg .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (10) :5541-5560
[3]   Liouville-Type Theorems for the Forced Euler Equations and the Navier-Stokes Equations [J].
Chae, Dongho .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (01) :37-48
[4]   On the Liouville theorem for the stationary Navier-Stokes equations in a critical space [J].
Chae, Dongho ;
Yoneda, Tsuyoshi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (02) :706-710
[5]   Some Liouville theorems for stationary Navier-Stokes equations in Lebesgue and Morrey spaces [J].
Chamorro, Diego ;
Jarrin, Oscar ;
Lemarie-Rieusset, Pierre-Gilles .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (03) :689-710
[6]   Remarks on Liouville-Type Theorems for the Steady MHD and Hall-MHD Equations [J].
Chen, Xiaomeng ;
Li, Shuai ;
Wang, Wendong .
JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (01)
[7]  
Galdi GP, 2011, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-09620-9
[8]  
Gilbarg D., 1978, Ann. Scuola Norm. Super. Pisa. CI. Sci, V5, P381
[9]   Liouville theorems for the Navier-Stokes equations and applications [J].
Koch, Gabriel ;
Nadirashvili, Nikolai ;
Seregin, Gregory A. ;
Sverak, Vladimir .
ACTA MATHEMATICA, 2009, 203 (01) :83-105
[10]   The Liouville Theorem for the Steady-State Navier-Stokes Problem for Axially Symmetric 3D Solutions in Absence of Swirl [J].
Korobkov, Mikhail ;
Pileckas, Konstantin ;
Russo, Remigio .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2015, 17 (02) :287-293