Single-Cell RNA Sequencing Technology Landscape in 2023

被引:20
作者
Qu, Hui-Qi [1 ]
Kao, Charlly [1 ]
Hakonarson, Hakon [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Childrens Hosp Philadelphia, Ctr Appl Genom, Philadelphia, PA USA
[2] Univ Penn, Perelman Sch Med, Dept Pediat, Philadelphia, PA USA
[3] Childrens Hosp Philadelphia, Div Human Genet, Philadelphia, PA USA
[4] Childrens Hosp Philadelphia, Div Pulm Med, Philadelphia, PA USA
[5] Univ Iceland, Fac Med, Reykjavik, Iceland
[6] Ctr Appl Genom, 3615 Civ Ctr Blvd,Abramson Bldg, Philadelphia, PA 19104 USA
关键词
cellular heterogeneity; gene expression; single-cell RNA sequencing; single-nucleus RNA sequencing; transcriptomics; GENOME-WIDE EXPRESSION; SEQ REVEALS; CHROMATIN; INSIGHTS; BIOLOGY;
D O I
10.1093/stmcls/sxad077
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity and the dynamics of gene expression, bearing profound significance in stem cell research. Depending on the starting materials used for analysis, scRNA-seq encompasses scRNA-seq and single-nucleus RNA sequencing (snRNA-seq). scRNA-seq excels in capturing cellular heterogeneity and characterizing rare cell populations within complex tissues, while snRNA-seq is advantageous in situations where intact cell dissociation is challenging or undesirable (eg, epigenomic studies). A number of scRNA-seq technologies have been developed as of late, including but not limited to droplet-based, plate-based, hydrogel-based, and spatial transcriptomics. The number of cells, sequencing depth, and sequencing length in scRNA-seq can vary across different studies. Addressing current technical challenges will drive the future of scRNA-seq, leading to more comprehensive and precise insights into cellular biology and disease mechanisms informing therapeutic interventions. Graphical Abstract
引用
收藏
页码:1 / 12
页数:12
相关论文
共 127 条
[1]   Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state [J].
Afik, Shaked ;
Yates, Kathleen B. ;
Bi, Kevin ;
Darko, Samuel ;
Godec, Jernej ;
Gerdemann, Ulrike ;
Swadling, Leo ;
Douek, Daniel C. ;
Klenerman, Paul ;
Barnes, Eleanor J. ;
Sharpe, Arlene H. ;
Haining, W. Nicholas ;
Yosef, Nir .
NUCLEIC ACIDS RESEARCH, 2017, 45 (16)
[2]   High-throughput RNA isoform sequencing using programmed cDNA concatenation [J].
Al'Khafaji, Aziz M. ;
Smith, Jonathan T. ;
Garimella, Kiran V. ;
Babadi, Mehrtash ;
Popic, Victoria ;
Sade-Feldman, Moshe ;
Gatzen, Michael ;
Sarkizova, Siranush ;
Schwartz, Marc A. ;
Blaum, Emily M. ;
Day, Allyson ;
Costello, Maura ;
Bowers, Tera ;
Gabriel, Stacey ;
Banks, Eric ;
Philippakis, Anthony A. ;
Boland, Genevieve M. ;
Blainey, Paul C. ;
Hacohen, Nir .
NATURE BIOTECHNOLOGY, 2024, 42 (04) :582-586
[3]   Whole-organism clone tracing using single-cell sequencing [J].
Alemany, Anna ;
Florescu, Maria ;
Baron, Chloe S. ;
Peterson-Maduro, Josi ;
van Oudenaarden, Alexander .
NATURE, 2018, 556 (7699) :108-+
[4]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[5]   Anifrolumab in systemic lupus erythematosus: current knowledge and future considerations [J].
Anderson, Erik ;
Furie, Richard .
IMMUNOTHERAPY, 2020, 12 (05) :275-286
[6]   The consequences of recurrent genetic and epigenetic variants in human pluripotent stem cells [J].
Andrews, Peter W. ;
Barbaric, Ivana ;
Benvenisty, Nissim ;
Draper, Jonathan S. ;
Ludwig, Tenneille ;
Merkle, Florian T. ;
Sato, Yoji ;
Spits, Claudia ;
Stacey, Glyn N. ;
Wang, Haoyi ;
Pera, Martin F. .
CELL STEM CELL, 2022, 29 (12) :1624-1636
[7]   TRAPnSeq allows high-throughput profiling of antigen-specific antibody-secreting cells [J].
Asrat, Seblewongel ;
Devlin, Joseph C. ;
Vecchione, Andrea ;
Klotz, Brian ;
Setliff, Ian ;
Srivastava, Devin ;
Limnander, Andre ;
Rafique, Ashique ;
Adler, Christina ;
Porter, Stephen ;
Murphy, Andrew J. ;
Atwal, Gurinder S. ;
Sleeman, Matthew A. ;
Lim, Wei Keat ;
Orengo, Jamie M. .
CELL REPORTS METHODS, 2023, 3 (07)
[8]   Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment [J].
Azizi, Elham ;
Carr, Ambrose J. ;
Plitas, George ;
Cornish, Andrew E. ;
Konopacki, Catherine ;
Prabhakaran, Sandhya ;
Nainys, Juozas ;
Wu, Kenmin ;
Kiseliovas, Vaidotas ;
Setty, Manu ;
Choi, Kristy ;
Fromme, Rachel M. ;
Phuong Dao ;
McKenney, Peter T. ;
Wasti, Ruby C. ;
Kadaveru, Krishna ;
Mazutis, Linas ;
Rudensky, Alexander Y. ;
Pe'er, Dana .
CELL, 2018, 174 (05) :1293-+
[9]   Dimensionality reduction for visualizing single-cell data using UMAP [J].
Becht, Etienne ;
McInnes, Leland ;
Healy, John ;
Dutertre, Charles-Antoine ;
Kwok, Immanuel W. H. ;
Ng, Lai Guan ;
Ginhoux, Florent ;
Newell, Evan W. .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :38-+
[10]   Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets [J].
Belkina, Anna C. ;
Ciccolella, Christopher O. ;
Anno, Rina ;
Halpert, Richard ;
Spidlen, Josef ;
Snyder-Cappione, Jennifer E. .
NATURE COMMUNICATIONS, 2019, 10 (1)