Multiplicative lattices, idempotent endomorphisms, and left skew braces

被引:0
|
作者
Facchini, Alberto [1 ]
Pompili, Mara [2 ]
机构
[1] Univ Padua, Dipartimento Matemat Tullio Levi Civita, I-35121 Padua, Italy
[2] Karl Franzens Univ Graz, Inst Math & Sci Comp NAWI Graz, Graz, Austria
基金
奥地利科学基金会;
关键词
Multiplicative lattice; Skew brace; Idempotent endomorphism; Commutator; Semidirect product; COMMUTATORS; EXTENSIONS; RINGS;
D O I
10.1142/S0219498825500409
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that, making use of multiplicative lattices and idempotent endomorphisms of an algebraic structure A, it is possible to derive several notions concerning A in a natural way. The multiplicative lattice necessary here is the complete lattice of congruences of A with multiplication given by commutator of congruences. Our main application is to the study of some notions concerning left skew braces.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] ENDOMORPHISMS OF SEMIMODULES OVER SEMIRINGS WITH AN IDEMPOTENT OPERATION
    DUDNIKOV, PI
    SAMBORSKII, SN
    MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 38 (01): : 91 - 105
  • [42] REPRESENTATION THEORY OF SKEW BRACES
    Kozakai, Yuta
    Tsang, Cindy
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2025, 14 (03) : 149 - 164
  • [43] Skew braces of squarefree order
    Alabdali, Ali A.
    Byott, Nigel P.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (07)
  • [44] PRIMARY MODULES DETERMINED BY INDECOMPOSABLE IDEMPOTENT ENDOMORPHISMS
    STRINGAL.RW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A90 - &
  • [45] Modules Coinvariant Under the Idempotent Endomorphisms of Their Covers
    A. N. Abyzov
    V. T. Le
    C. Q. Truong
    A. A. Tuganbaev
    Siberian Mathematical Journal, 2019, 60 : 927 - 939
  • [46] Central nilpotency of skew braces
    Bonatto, Marco
    Jedlicka, Premysl
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (12)
  • [47] Skew Braces: A Brief Survey
    Vendramin, Leandro
    GEOMETRIC METHODS IN PHYSICS XL, WGMP 2022, 2024, : 153 - 175
  • [48] Idempotent matrix lattices over distributive lattices
    Kumarov V.G.
    Journal of Mathematical Sciences, 2008, 155 (6) : 877 - 893
  • [49] Commutative idempotent residuated lattices
    David Stanovský
    Czechoslovak Mathematical Journal, 2007, 57 : 191 - 200
  • [50] Commutative idempotent residuated lattices
    Stanovsky, David
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2007, 57 (01) : 191 - 200