Low-rank approximation of matrix;
Projection and recovery matrix;
Reconstruction error;
Kronecker product;
Sparsity;
Feature selection;
Classification;
PRINCIPAL COMPONENT ANALYSIS;
FACE REPRESENTATION;
2-DIMENSIONAL PCA;
EIGENFACES;
D O I:
10.1007/s00500-023-09189-3
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
The left/right projection matrix and recovery matrix used for the reconstruction error in the traditional generalized low-rank approximation of matrix models are the same and orthogonal, which makes the model inflexible. To this end, we propose the flexible sparse robust low-rank approximation of matrices model to integrate feature selection into subspace learning and to exclude the redundant features. In the proposed model, two recovery matrices are introduced to together recover the original image data from the subspace spanned by the selected features, resulting in more freedom and flexible to jointly select useful features for low-dimensional representation. Moreover, the L1-norm is imposed on the reconstruction error and L2,1-norm on the Kronecker product of left and right transformation matrices, which can reduce the influence of noise on errors and perform feature selection while learning the optimal transformation matrices and recovery matrices. According to some theoretical analysis, an alternative iterative solution method is designed, and the convergence and time complexity of the algorithm are analyzed. The experimental results on some image datasets show that our method is superior to the existing state-of-the-art methods.
机构:
Virginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USAVirginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USA
Brooks, J. P.
;
Dula, J. H.
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Commonwealth Univ, Dept Management, Richmond, VA 23284 USAVirginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USA
Dula, J. H.
;
Boone, E. L.
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USAVirginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USA
机构:
Jiangnan Univ, Sch Digital Media, Wuxi, Jiangsu, Peoples R China
Jiangnan Univ, Jiangsu Key Lab Media Design & Software Technol, Wuxi, Jiangsu, Peoples R ChinaJiangnan Univ, Sch Digital Media, Wuxi, Jiangsu, Peoples R China
Chen, Xiuhong
;
Sun, Huiqiang
论文数: 0引用数: 0
h-index: 0
机构:
Jiangnan Univ, Sch Digital Media, Wuxi, Jiangsu, Peoples R ChinaJiangnan Univ, Sch Digital Media, Wuxi, Jiangsu, Peoples R China
机构:
Virginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USAVirginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USA
Brooks, J. P.
;
Dula, J. H.
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Commonwealth Univ, Dept Management, Richmond, VA 23284 USAVirginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USA
Dula, J. H.
;
Boone, E. L.
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USAVirginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USA
机构:
Jiangnan Univ, Sch Digital Media, Wuxi, Jiangsu, Peoples R China
Jiangnan Univ, Jiangsu Key Lab Media Design & Software Technol, Wuxi, Jiangsu, Peoples R ChinaJiangnan Univ, Sch Digital Media, Wuxi, Jiangsu, Peoples R China
Chen, Xiuhong
;
Sun, Huiqiang
论文数: 0引用数: 0
h-index: 0
机构:
Jiangnan Univ, Sch Digital Media, Wuxi, Jiangsu, Peoples R ChinaJiangnan Univ, Sch Digital Media, Wuxi, Jiangsu, Peoples R China