Hybrid physics-based and machine learning model with interpretability and uncertainty for real-time estimation of unmeasurable parts

被引:4
作者
Kaneko, Tatsuya [1 ]
Wada, Ryota [1 ]
Ozaki, Masahiko [1 ]
Inoue, Tomoya [2 ]
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[2] Japan Agcy Marine Earth Sci & Technol, Inst Marine Earth Explorat & Engn, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan
关键词
Hybrid model; Machine learning; Explainable artificial intelligence; Uncertainty quantification; Domain randomization; Offshore drilling; NEURAL-NETWORKS; DEEP; FRAMEWORK;
D O I
10.1016/j.oceaneng.2023.115267
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Physics-based models are used to estimate the behavior of dynamic systems. However, these models contain uncertainties, i.e., "parameter uncertainty"and "structural uncertainty,"which cause the gap between real phenomena and physics-based models (reality gap). Kaneko et al., (2022) proposed a hybrid physics-based and machine learning model for the real-time estimation of unmeasurable parts and demonstrated the high performance for the "parameter uncertainty."This study verifies the hybrid model performance for the "structural uncertainty."Additionally, two new concepts are discussed, interpretability and uncertainty, and implemented in the hybrid model.The hybrid model performance for the structural uncertainty is examined by numerical experiments and application to measured data using a deep-water offshore drilling system as an application case study. The results show that the hybrid model gives robust estimation for the structural uncertainty. Additionally, the hybrid model accuracy increases as the physics-based model accuracy used for training increases. Furthermore, several seconds of future data could improve the model performance for the transient response. Finally, we show that two new outputs could effectively explain the reality gap; the model outputs the estimation of the uncertain parameter to give interpretability within the parameter uncertainty and the structural uncertainty metric outside the parameter uncertainty.
引用
收藏
页数:16
相关论文
共 37 条
  • [1] A review of uncertainty quantification in deep learning: Techniques, applications and challenges
    Abdar, Moloud
    Pourpanah, Farhad
    Hussain, Sadiq
    Rezazadegan, Dana
    Liu, Li
    Ghavamzadeh, Mohammad
    Fieguth, Paul
    Cao, Xiaochun
    Khosravi, Abbas
    Acharya, U. Rajendra
    Makarenkov, Vladimir
    Nahavandi, Saeid
    [J]. INFORMATION FUSION, 2021, 76 : 243 - 297
  • [2] Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)
    Adadi, Amina
    Berrada, Mohammed
    [J]. IEEE ACCESS, 2018, 6 : 52138 - 52160
  • [3] Learning dexterous in-hand manipulation
    Andrychowicz, Marcin
    Baker, Bowen
    Chociej, Maciek
    Jozefowicz, Rafal
    McGrew, Bob
    Pachocki, Jakub
    Petron, Arthur
    Plappert, Matthias
    Powell, Glenn
    Ray, Alex
    Schneider, Jonas
    Sidor, Szymon
    Tobin, Josh
    Welinder, Peter
    Weng, Lilian
    Zaremba, Wojciech
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (01) : 3 - 20
  • [4] Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
    Barredo Arrieta, Alejandro
    Diaz-Rodriguez, Natalia
    Del Ser, Javier
    Bennetot, Adrien
    Tabik, Siham
    Barbado, Alberto
    Garcia, Salvador
    Gil-Lopez, Sergio
    Molina, Daniel
    Benjamins, Richard
    Chatila, Raja
    Herrera, Francisco
    [J]. INFORMATION FUSION, 2020, 58 : 82 - 115
  • [5] The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation
    Chicco, Davide
    Warrens, Matthijs J.
    Jurman, Giuseppe
    [J]. PEERJ COMPUTER SCIENCE, 2021,
  • [6] Vessels fuel consumption forecast and trim optimisation: A data analytics perspective
    Coraddu, Andrea
    Oneto, Luca
    Baldi, Francesco
    Anguita, Davide
    [J]. OCEAN ENGINEERING, 2017, 130 : 351 - 370
  • [7] Effects of nonlinear friction of passive heave compensator on drilling operation - Part I: Modeling and analysis
    Cuellar Sanchez, William Humberto
    Neto, Andre Benine
    Feitosa Fortaleza, Eugenio Liborio
    [J]. OCEAN ENGINEERING, 2020, 213
  • [8] ANN-based surrogate models for the analysis of mooring lines and risers
    de Pina, Aloisio Carlos
    de Pina, Aline Aparecida
    Albrecht, Carl Horst
    Souza Leite Pires de Lima, Beatriz
    Jacob, Brerio Pinheiro
    [J]. APPLIED OCEAN RESEARCH, 2013, 41 : 76 - 86
  • [9] Gal Y., 2016, UNCERTAINTY DEEP LEA
  • [10] Gal Y, 2016, ADV NEUR IN, V29