Promoting effect of magnesium introduced in Li/Ni sites of LiNiO2 for lithium-ion batteries

被引:7
作者
Du, Fanghui [1 ,2 ,3 ]
Ding, Lei [1 ,2 ]
Shi, Wenjing [1 ,2 ]
Wang, Yan [1 ,2 ]
Fan, Zhongxu [3 ]
Li, Yunwu [1 ,2 ]
Zheng, Junwei [3 ]
机构
[1] Liaocheng Univ, Shandong Prov Key Lab Chem Energy Storage & Novel, Liaocheng 252000, Peoples R China
[2] Liaocheng Univ, Sch Chem & Chem Engn, Liaocheng 252000, Peoples R China
[3] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Peoples R China
关键词
Lithium nickelate; Mg doping; Cation mixing; Pillaring effect; Lithium-ion batteries; POSITIVE ELECTRODE MATERIALS; LAYERED OXIDE CATHODES; PERFORMANCE; COBALT;
D O I
10.1016/j.ceramint.2022.11.168
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The high cost of Co strongly drives the increase of Ni fraction and the decline of Co ingredient in commercial Ni-rich cathodes, generating convergence towards LiNiO2 (LNO). However, pure LNO suffers from poor cycling and rate performance due to severe Li+/Ni2+ cation mixing and structural degradation. Herein, a series of Mg-doped LNO are synthesized to elucidate the effect of the Mg dopant. It is demonstrated that around 2.21% and 2.79% of Mg2+ ions occupy the Li and Ni sites, respectively. The presence of Mg in the Li sites reduces Li+/Ni2+ cation mixing, enlarges the c-axis lattice, and acts as pillar ions, which facilitates Li+ diffusion and significantly im-proves the rate performance of Mg-doped LNO. Additionally, the introduction of Mg in the Li/Ni sites disturbs Li/ vacancy ordering in the Li layers and electronic rearrangements in the Ni layers, which inhibits the two-phase separation transition at the end of charge. Furthermore, the pillaring effect of Mg2+ ions in Li sites and the stabilizing effect of Mg2+ ions in Ni sites at the end of delithiation alleviate the drastic c-axis shrinkage. Therefore, the optimized Mg-doped LNO exhibits reversible structure evolution, less microcracks, stable impedance growth, and excellent electrochemical performance during long-term cycling.
引用
收藏
页码:9924 / 9931
页数:8
相关论文
共 47 条
[1]   Effect of Li Excess on Electrochemical Performance of Ni-Rich LiNi0.9Co0.05Mn0.05O2 Cathode Materials for Li-Ion Batteries [J].
Abebe, Eyob Belew ;
Yang, Chun-Chen ;
Wu, She-Huang ;
Chien, Wen-Chen ;
Li, Ying-Jeng James .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (12) :14295-14308
[2]   There and Back Again-The Journey of LiNiO2 as a Cathode Active Material [J].
Bianchini, Matteo ;
Roca-Ayats, Maria ;
Hartmann, Pascal ;
Brezesinski, Torsten ;
Janek, Juergen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (31) :10434-10458
[3]   Al-doping induced superior lithium ion storage capability of LiNiO2 spheres [J].
Cao, Haishang ;
Du, Fanghui ;
Adkins, Jason ;
Zhou, Qun ;
Dai, Hui ;
Sun, Pengpeng ;
Hu, Die ;
Zheng, Junwei .
CERAMICS INTERNATIONAL, 2020, 46 (12) :20050-20060
[4]   Recent Progress and Perspective of Advanced High-Energy Co-Less Ni-Rich Cathodes for Li-Ion Batteries: Yesterday, Today, and Tomorrow [J].
Choi, Ji Ung ;
Voronina, Natalia ;
Sun, Yang-Kook ;
Myung, Seung-Taek .
ADVANCED ENERGY MATERIALS, 2020, 10 (42)
[5]   Structural characterisation of the highly deintercalated LixNi1.02O2 phases (with x ≤ 0.30) [J].
Croguennec, L ;
Pouillerie, C ;
Mansour, AN ;
Delmas, C .
JOURNAL OF MATERIALS CHEMISTRY, 2001, 11 (01) :131-141
[6]   Structure and primary particle double-tuning by trace nano-TiO2 for a high-performance LiNiO2 cathode material [J].
Deng, Shiyi ;
Li, Yunjiao ;
Dai, Qiongyu ;
Fu, Jiamin ;
Chen, Yongxiang ;
Zheng, Junchao ;
Lei, Tongxing ;
Guo, Jia ;
Gao, Jing ;
Li, Wei .
SUSTAINABLE ENERGY & FUELS, 2019, 3 (11) :3234-3243
[7]   Surface Modification Engineering Enabling 4.6 V Single-Crystalline Ni-Rich Cathode with Superior Long-Term Cyclability [J].
Fan, Xin-Ming ;
Huang, Ying-De ;
Wei, Han-Xin ;
Tang, Lin-Bo ;
He, Zhen-Jiang ;
Yan, Cheng ;
Mao, Jing ;
Dai, Ke-Hua ;
Zheng, Jun-Chao .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (06)
[8]   Magnesium Substitution in Ni-Rich NMC Layered Cathodes for High-Energy Lithium Ion Batteries [J].
Gomez-Martin, Aurora ;
Reissig, Friederike ;
Frankenstein, Lars ;
Heidbuchel, Marcel ;
Winter, Martin ;
Placke, Tobias ;
Schmuch, Richard .
ADVANCED ENERGY MATERIALS, 2022, 12 (08)
[9]   Single step synthesis of W-modified LiNiO2 using an ammonium tungstate flux [J].
Goonetilleke, Damian ;
Mazilkin, Andrey ;
Weber, Daniel ;
Ma, Yuan ;
Fauth, Francois ;
Janek, Juergen ;
Brezesinski, Torsten ;
Bianchini, Matteo .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (14) :7841-7855
[10]   Enhancing structure and cycling stability of Ni-rich layered oxide cathodes at elevated temperatures via dual-function surface modification [J].
Huang, Ying-De ;
Wei, Han-Xin ;
Li, Pei-Yao ;
Luo, Yu-Hong ;
Wen, Qing ;
Le, Ding-Hao ;
He, Zhen-Jiang ;
Wang, Hai-Yan ;
Tang, You-Gen ;
Yan, Cheng ;
Mao, Jing ;
Dai, Ke-Hua ;
Zhang, Xia-Hui ;
Zheng, Jun-Chao .
JOURNAL OF ENERGY CHEMISTRY, 2022, 75 :301-309