Higher-Order Bernstein-Kantorovich Operators

被引:2
作者
Anjali, Vijay [1 ]
Gupta, Vijay [1 ]
机构
[1] Netaji Subhas Univ Technol, Dept Math, Sect 3, New Delhi 110078, India
关键词
Higher-order Bernstein-Kantorovich operators; Asymptotic formula; Error estimations; Moment generating function; APPROXIMATION;
D O I
10.1007/s40010-022-00804-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the present paper, we consider the higher order (j-th order, j is an element of N-0 ) Bernstein-Kantorovich operators, which are connected with the Bernstein polynomials. We estimate some direct results including the Voronovskajakind asymptotic formula, simultaneous approximation and error estimations. In the end, we present comparative study through graphical representation and numerically interpret the upper bound of the error value.
引用
收藏
页码:233 / 242
页数:10
相关论文
共 20 条
[1]   Local approximation by a variant of Bernstein-Durrmeyer operators [J].
Abel, Ulrich ;
Gupta, Vijay ;
Mohapatra, Ram N. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (11) :3372-3381
[2]   Linear prediction and simultaneous approximation by m-th order Kantorovich type sampling series [J].
Acar, Tuncer ;
Costarelli, Danilo ;
Vinti, Gianluca .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (04) :1481-1508
[3]   APPROXIMATION BY k-TH ORDER MODIFICATIONS OF SZASZ-MIRAKYAN OPERATORS [J].
Acar, Tuncer ;
Aral, Ali ;
Rasa, Ioan .
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2016, 53 (03) :379-398
[4]   Estimates for the Differences of Certain Positive Linear Operators [J].
Acu, Ana Maria ;
Hodis, Sever ;
Rasa, Ioan .
MATHEMATICS, 2020, 8 (05)
[5]   On q-analogue of a complex summation-integral type operators in compact disks [J].
Agarwal, Ravi P. ;
Gupta, Vijay .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012, :1-13
[6]  
Devore RA, 1933, CONSTR APPROX, P304
[7]  
Ditzian Z, 1987, Moduli of smoothness, springer ser. comput. math, P9
[8]   The Bernstein Voronovskaja-type theorem for positive linear approximation operators [J].
Gavrea, Ioan ;
Ivan, Mircea .
JOURNAL OF APPROXIMATION THEORY, 2015, 192 :291-296
[9]   QUANTITATIVE CONVERGENCE THEOREMS FOR A CLASS OF BERNSTEIN-DURRMEYER OPERATORS PRESERVING LINEAR FUNCTIONS [J].
Gonska, H. ;
Paltanea, R. .
UKRAINIAN MATHEMATICAL JOURNAL, 2010, 62 (07) :1061-1072
[10]   Kantorovich Operators of Order k [J].
Gonska, Heiner ;
Heilmann, Margareta ;
Rasa, Ioan .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (07) :717-738