Preparing random states and benchmarking with many-body quantum chaos

被引:94
作者
Choi, Joonhee [1 ]
Shaw, Adam L. L. [1 ]
Madjarov, Ivaylo S. S. [1 ]
Xie, Xin [1 ]
Finkelstein, Ran [1 ]
Covey, Jacob P. P. [1 ,2 ]
Cotler, Jordan S. S. [3 ]
Mark, Daniel K. K. [4 ]
Huang, Hsin-Yuan [1 ]
Kale, Anant [3 ]
Pichler, Hannes [5 ,6 ]
Brandao, Fernando G. S. L. [1 ]
Choi, Soonwon [4 ,7 ]
Endres, Manuel [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Univ Illinois, Dept Phys, Urbana, IL USA
[3] Harvard Univ, Cambridge, MA USA
[4] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[5] Univ Innsbruck, Inst Theoret Phys, Innsbruck, Austria
[6] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, Innsbruck, Austria
[7] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
关键词
THERMALIZATION; ENTANGLEMENT; SUPREMACY; CIRCUITS; ENTROPY; ATOMS;
D O I
10.1038/s41586-022-05442-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Producing quantum states at random has become increasingly important in modern quantum science, with applications being both theoretical and practical. In particular, ensembles of such randomly distributed, but pure, quantum states underlie our understanding of complexity in quantum circuits(1) and black holes(2), and have been used for benchmarking quantum devices(3,4) in tests of quantum advantage(5,6). However, creating random ensembles has necessitated a high degree of spatio-temporal control(7-12) placing such studies out of reach for a wide class of quantum systems. Here we solve this problem by predicting and experimentally observing the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics, which we use to implement an efficient, widely applicable benchmarking protocol. The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system, offering new insights into quantum thermalization(13). Predicated on this discovery, we develop a fidelity estimation scheme, which we demonstrate for a Rydberg quantum simulator with up to 25 atoms using fewer than 10(4) experimental samples. This method has broad applicability, as we demonstrate for Hamiltonian parameter estimation, target-state generation benchmarking, and comparison of analogue and digital quantum devices. Our work has implications for understanding randomness in quantum dynamics(14) and enables applications of this concept in a much wider context(4,5,9,10,15-20).
引用
收藏
页码:468 / +
页数:18
相关论文
共 55 条
[31]   Demonstration of quantum volume 64 on a superconducting quantum computing system [J].
Jurcevic, Petar ;
Javadi-Abhari, Ali ;
Bishop, Lev S. ;
Lauer, Isaac ;
Bogorin, Daniela F. ;
Brink, Markus ;
Capelluto, Lauren ;
Gunluk, Oktay ;
Itoko, Toshinari ;
Kanazawa, Naoki ;
Kandala, Abhinav ;
Keefe, George A. ;
Krsulich, Kevin ;
Landers, William ;
Lewandowski, Eric P. ;
McClure, Douglas T. ;
Nannicini, Giacomo ;
Narasgond, Adinath ;
Nayfeh, Hasan M. ;
Pritchett, Emily ;
Rothwell, Mary Beth ;
Srinivasan, Srikanth ;
Sundaresan, Neereja ;
Wang, Cindy ;
Wei, Ken X. ;
Wood, Christopher J. ;
Yau, Jeng-Bang ;
Zhang, Eric J. ;
Dial, Oliver E. ;
Chow, Jerry M. ;
Gambetta, Jay M. .
QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (02)
[32]   Quantum thermalization through entanglement in an isolated many-body system [J].
Kaufman, Adam M. ;
Tai, M. Eric ;
Lukin, Alexander ;
Rispoli, Matthew ;
Schittko, Robert ;
Preiss, Philipp M. ;
Greiner, Markus .
SCIENCE, 2016, 353 (6301) :794-800
[33]   Operator Spreading and the Emergence of Dissipative Hydrodynamics under Unitary Evolution with Conservation Laws [J].
Khemani, Vedika ;
Vishwanath, Ashvin ;
Huse, David A. .
PHYSICAL REVIEW X, 2018, 8 (03)
[34]   High-fidelity entanglement and detection of alkaline-earth Rydberg atoms [J].
Madjarov, Ivaylo S. ;
Covey, Jacob P. ;
Shaw, Adam L. ;
Choi, Joonhee ;
Kale, Anant ;
Cooper, Alexandre ;
Pichler, Hannes ;
Schkolnik, Vladimir ;
Williams, Jason R. ;
Endres, Manuel .
NATURE PHYSICS, 2020, 16 (08) :857-+
[35]   An Atomic-Array Optical Clock with Single-Atom Readout [J].
Madjarov, Ivaylo S. ;
Cooper, Alexandre ;
Shaw, Adam L. ;
Covey, Jacob P. ;
Schkolnik, Vladimir ;
Yoon, Tai Hyun ;
Williams, Jason R. ;
Endres, Manuel .
PHYSICAL REVIEW X, 2019, 9 (04)
[36]  
Mark DK, 2022, Arxiv, DOI arXiv:2205.12211
[37]   Programmable quantum simulations of spin systems with trapped ions [J].
Monroe, C. ;
Campbell, W. C. ;
Duan, L-M ;
Gong, Z-X ;
Gorshkov, A., V ;
Hess, P. W. ;
Islam, R. ;
Kim, K. ;
Linke, N. M. ;
Pagano, G. ;
Richerme, P. ;
Senko, C. ;
Yao, N. Y. .
REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
[38]   Efficient Quantum Pseudorandomness with Nearly Time-Independent Hamiltonian Dynamics [J].
Nakata, Yoshifumi ;
Hirche, Christoph ;
Koashi, Masato ;
Winter, Andreas .
PHYSICAL REVIEW X, 2017, 7 (02)
[39]   Many-Body Localization and Thermalization in Quantum Statistical Mechanics [J].
Nandkishore, Rahul ;
Huse, David A. .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 6, 2015, 6 :15-38
[40]   A blueprint for demonstrating quantum supremacy with superconducting qubits [J].
Neill, C. ;
Roushan, P. ;
Kechedzhi, K. ;
Boixo, S. ;
Isakov, S. V. ;
Smelyanskiy, V. ;
Megrant, A. ;
Chiaro, B. ;
Dunsworth, A. ;
Arya, K. ;
Barends, R. ;
Burkett, B. ;
Chen, Y. ;
Chen, Z. ;
Fowler, A. ;
Foxen, B. ;
Giustina, M. ;
Graff, R. ;
Jeffrey, E. ;
Huang, T. ;
Kelly, J. ;
Klimov, P. ;
Lucero, E. ;
Mutus, J. ;
Neeley, M. ;
Quintana, C. ;
Sank, D. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Neven, H. ;
Martinis, J. M. .
SCIENCE, 2018, 360 (6385) :195-198