Preparing random states and benchmarking with many-body quantum chaos

被引:65
|
作者
Choi, Joonhee [1 ]
Shaw, Adam L. L. [1 ]
Madjarov, Ivaylo S. S. [1 ]
Xie, Xin [1 ]
Finkelstein, Ran [1 ]
Covey, Jacob P. P. [1 ,2 ]
Cotler, Jordan S. S. [3 ]
Mark, Daniel K. K. [4 ]
Huang, Hsin-Yuan [1 ]
Kale, Anant [3 ]
Pichler, Hannes [5 ,6 ]
Brandao, Fernando G. S. L. [1 ]
Choi, Soonwon [4 ,7 ]
Endres, Manuel [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Univ Illinois, Dept Phys, Urbana, IL USA
[3] Harvard Univ, Cambridge, MA USA
[4] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[5] Univ Innsbruck, Inst Theoret Phys, Innsbruck, Austria
[6] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, Innsbruck, Austria
[7] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
关键词
THERMALIZATION; ENTANGLEMENT; SUPREMACY; CIRCUITS; ENTROPY; ATOMS;
D O I
10.1038/s41586-022-05442-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Producing quantum states at random has become increasingly important in modern quantum science, with applications being both theoretical and practical. In particular, ensembles of such randomly distributed, but pure, quantum states underlie our understanding of complexity in quantum circuits(1) and black holes(2), and have been used for benchmarking quantum devices(3,4) in tests of quantum advantage(5,6). However, creating random ensembles has necessitated a high degree of spatio-temporal control(7-12) placing such studies out of reach for a wide class of quantum systems. Here we solve this problem by predicting and experimentally observing the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics, which we use to implement an efficient, widely applicable benchmarking protocol. The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system, offering new insights into quantum thermalization(13). Predicated on this discovery, we develop a fidelity estimation scheme, which we demonstrate for a Rydberg quantum simulator with up to 25 atoms using fewer than 10(4) experimental samples. This method has broad applicability, as we demonstrate for Hamiltonian parameter estimation, target-state generation benchmarking, and comparison of analogue and digital quantum devices. Our work has implications for understanding randomness in quantum dynamics(14) and enables applications of this concept in a much wider context(4,5,9,10,15-20).
引用
收藏
页码:468 / +
页数:18
相关论文
共 50 条
  • [1] Preparing random states and benchmarking with many-body quantum chaos
    Joonhee Choi
    Adam L. Shaw
    Ivaylo S. Madjarov
    Xin Xie
    Ran Finkelstein
    Jacob P. Covey
    Jordan S. Cotler
    Daniel K. Mark
    Hsin-Yuan Huang
    Anant Kale
    Hannes Pichler
    Fernando G. S. L. Brandão
    Soonwon Choi
    Manuel Endres
    Nature, 2023, 613 : 468 - 473
  • [2] Preparing quantum many-body scar states on quantum computers
    Gustafson, Erik J.
    Li, Andy C. Y.
    Khan, Abid
    Kim, Joonho
    Kurkcuoglu, Doga Murat
    Alam, M. Sohaib
    Orth, Peter P.
    Rahmani, Armin
    Iadecola, Thomas
    QUANTUM, 2023, 7 : 1 - 34
  • [3] Preparing Ground States of Quantum Many-Body Systems on a Quantum Computer
    Poulin, David
    Wocjan, Pawel
    PHYSICAL REVIEW LETTERS, 2009, 102 (13)
  • [4] Thermal states of random quantum many-body systems
    Nakata, Yoshifumi
    Osborne, Tobias J.
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [5] Quantum Chaos, Random Matrices, and Irreversibility in Interacting Many-Body Quantum Systems
    Weidenmueller, Hans A.
    ENTROPY, 2022, 24 (07)
  • [6] Many-body physics and quantum chaos
    Ullmo, Denis
    REPORTS ON PROGRESS IN PHYSICS, 2008, 71 (02)
  • [7] Many-body aspects of quantum chaos
    Zelevinsky, V
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (5-6): : 569 - 577
  • [8] Many-Body Quantum Chaos: Analytic Connection to Random Matrix Theory
    Kos, Pavel
    Ljubotina, Marko
    Prosen, Tomaz
    PHYSICAL REVIEW X, 2018, 8 (02):
  • [9] Probing Many-Body Quantum Chaos with Quantum Simulators
    Joshi, Lata Kh
    Elben, Andreas
    Vikram, Amit
    Vermersch, Benoit
    Galitski, Victor
    Zoller, Peter
    PHYSICAL REVIEW X, 2022, 12 (01)
  • [10] Many-Body Quantum Chaos and Entanglement in a Quantum Ratchet
    Valdez, Marc Andrew
    Shchedrin, Gavriil
    Heimsoth, Martin
    Creffield, Charles E.
    Sols, Fernando
    Carr, Lincoln D.
    PHYSICAL REVIEW LETTERS, 2018, 120 (23)