Turbulent Rotating Rayleigh-Benard Convection

被引:64
|
作者
Ecke, Robert E. [1 ,2 ]
Shishkina, Olga [3 ]
机构
[1] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[3] Max Planck Inst Dynam & Self Org, Gottingen, Germany
关键词
turbulence; buoyancy; rotation; convection; Rayleigh-Benard flow; heat transport; theory; measurements; direct numerical simulations; LARGE-SCALE CIRCULATION; HEAT-TRANSPORT; THERMAL-CONVECTION; BOUSSINESQ APPROXIMATION; ASYMMETRIC MODES; BOUNDARY-LAYERS; FLOW STRUCTURE; FLUID; ONSET; STABILITY;
D O I
10.1146/annurev-fluid-120720-020446
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Rotation with thermally induced buoyancy governs many astrophysical and geophysical processes in the atmosphere, ocean, sun, and Earth's liquid-metal outer core. Rotating Rayleigh-Benard convection (RRBC) is an experimental system that has features of rotation and buoyancy, where a container of height H and temperature difference Delta between its bottom and top is rotated about its vertical axis with angular velocity Omega. The strength of buoyancy is reflected in the Rayleigh number (similar to H-3 Delta) and that of the Coriolis force in the Ekman and Rossby numbers (similar to Omega(-1)). Rotation suppresses the convective onset, introduces instabilities, changes the velocity boundary layers, modifies the shape of thermal structures from plumes to vortical columns, affects the large-scale circulation, and can decrease or enhance global heat transport depending on buoyant and Coriolis forcing. RRBC is an extremely rich system, with features directly comparable to geophysical and astrophysical phenomena. Here we review RRBC studies, suggest a unifying heat transport scaling approach for the transition between rotation-dominated and buoyancy-dominated regimes in RRBC, and discuss non-Oberbeck-Boussinesq and centrifugal effects.
引用
收藏
页码:603 / 638
页数:36
相关论文
共 50 条
  • [41] Countertraveling waves in rotating Rayleigh-Benard convection
    Li, Ligang
    Liao, Xinhao
    Zhang, Keke
    PHYSICAL REVIEW E, 2008, 77 (02):
  • [42] PLANFORM STRUCTURE OF TURBULENT RAYLEIGH-BENARD CONVECTION
    THEERTHAN, SA
    ARAKERI, JH
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 1994, 21 (04) : 561 - 572
  • [43] Turbulent thermal superstructures in Rayleigh-Benard convection
    Stevens, Richard J. A. M.
    Blass, Alexander
    Zhu, Xiaojue
    Verzicco, Roberto
    Lohse, Detlef
    PHYSICAL REVIEW FLUIDS, 2018, 3 (04):
  • [44] Turbulent Rayleigh-Benard convection in an annular cell
    Zhu, Xu
    Jiang, Lin-Feng
    Zhou, Quan
    Sun, Chao
    JOURNAL OF FLUID MECHANICS, 2019, 869
  • [45] Numerical simulation of turbulent Rayleigh-Benard convection
    Yang, HX
    Zhu, ZJ
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2006, 33 (02) : 184 - 190
  • [46] Numerical simulation of turbulent Rayleigh-Benard convection
    Palymskiy, Igor
    PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2012, 12 (04): : 243 - 250
  • [47] The large-scale flow structure in turbulent rotating Rayleigh-Benard convection
    Weiss, Stephan
    Ahlers, Guenter
    JOURNAL OF FLUID MECHANICS, 2011, 688 : 461 - 492
  • [48] Rotating turbulent Rayleigh-Benard convection subject to harmonically forced flow reversals
    Geurts, Bernard J.
    Kunnen, Rudie P. J.
    JOURNAL OF TURBULENCE, 2014, 15 (11): : 776 - 794
  • [49] Bifurcations in turbulent rotating Rayleigh-Benard convection: A finite-size effect
    Weiss, Stephan
    Ahlers, Guenter
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): CONVECTION, ROTATION, STRATIFICATION AND BUOYANCY EFFECTS, 2011, 318
  • [50] TIME AND LENGTH SCALES IN ROTATING RAYLEIGH-BENARD CONVECTION
    HU, YC
    ECKE, RE
    AHLERS, G
    PHYSICAL REVIEW LETTERS, 1995, 74 (25) : 5040 - 5043