Geodesics in the Space of m-Subharmonic Functions With Bounded Energy

被引:1
作者
Ahag, Per [1 ]
Czyz, Rafal [2 ]
机构
[1] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
[2] Jagiellonian Univ, Fac Math & Comp Sci, Inst Math, Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
COMPLEX MONGE-AMPERE; DIRICHLET PROBLEM; METRIC GEOMETRY; WEAK SOLUTIONS; ENVELOPES; EQUATIONS;
D O I
10.1093/imrn/rnac129
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
With inspiration from the Kahler geometry, we introduce a metric structure on the energy class, epsilon(1,m), of m-subharmonic functions with bounded energy and show that it is complete. After studying how the metric convergence relates to the accepted convergences in this Caffarelli-Nirenberg-Spruck model, we end by constructing geodesics in a subspace of our complete metric space.
引用
收藏
页码:10115 / 10155
页数:41
相关论文
共 60 条
[11]   Weak solutions to the complex Hessian equation [J].
Blocki, Z .
ANNALES DE L INSTITUT FOURIER, 2005, 55 (05) :1735-+
[12]   Monge-Ampere equations in big cohomology classes [J].
Boucksom, Sebastien ;
Eyssidieux, Philippe ;
Guedj, Vincent ;
Zeriahi, Ahmed .
ACTA MATHEMATICA, 2010, 205 (02) :199-262
[13]  
Bridson M. R., 1999, FUNDAMENTAL PRINCIPL, V319, DOI [DOI 10.1007/978-3-662-12494-9, 10.1007/978-3-662-12494-9]
[14]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[15]   Pluricomplex energy [J].
Cegrell, U .
ACTA MATHEMATICA, 1998, 180 (02) :187-217
[16]  
Cegrell U., 1997, ANN POL MATH, V67, P95, DOI [10.4064/ap-67-1-95-102, DOI 10.4064/AP-67-1-95-102]
[17]   A general Dirichlet problem for the complex Monge-Ampere operator [J].
Cegrell, Urban .
ANNALES POLONICI MATHEMATICI, 2008, 94 (02) :131-147
[18]  
Chen X., 2018, CONSTANT SCALAR CURV
[19]  
Chen X., 2018, ARXIV180100656
[20]  
Chen X.X., 2017, ARXIV171206697