Geodesics in the Space of m-Subharmonic Functions With Bounded Energy

被引:1
作者
Ahag, Per [1 ]
Czyz, Rafal [2 ]
机构
[1] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
[2] Jagiellonian Univ, Fac Math & Comp Sci, Inst Math, Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
COMPLEX MONGE-AMPERE; DIRICHLET PROBLEM; METRIC GEOMETRY; WEAK SOLUTIONS; ENVELOPES; EQUATIONS;
D O I
10.1093/imrn/rnac129
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
With inspiration from the Kahler geometry, we introduce a metric structure on the energy class, epsilon(1,m), of m-subharmonic functions with bounded energy and show that it is complete. After studying how the metric convergence relates to the accepted convergences in this Caffarelli-Nirenberg-Spruck model, we end by constructing geodesics in a subspace of our complete metric space.
引用
收藏
页码:10115 / 10155
页数:41
相关论文
共 60 条
[1]   Concerning the energy class εp for 0 < p < 1 [J].
Ahag, Per ;
Czyz, Rafal ;
Hiep, Pham Hoang .
ANNALES POLONICI MATHEMATICI, 2007, 91 (2-3) :119-130
[2]   Poincare- and Sobolev- Type Inequalities for Complex m-Hessian Equations [J].
Ahag, Per ;
Czyz, Rafal .
RESULTS IN MATHEMATICS, 2020, 75 (02)
[3]   The Geometry of m-Hyperconvex Domains [J].
Ahag, Per ;
Czyz, Rafal ;
Hed, Lisa .
JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (04) :3196-3222
[4]   Modulability and duality of certain cones in pluripotential theory [J].
Ahag, Per ;
Czyz, Rafal .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (02) :302-321
[5]  
Banach S., 1922, Fundamenta Mathematicae, V3, P133, DOI [DOI 10.4064/FM-3-1-133-181, 10.4064/fm-3-1-133-181]
[6]   Weak solutions to the complex Monge-Ampere equation on hyperconvex domains [J].
Benelkourchi, Slimane .
ANNALES POLONICI MATHEMATICI, 2014, 112 (03) :239-246
[7]  
Berman R.J., 2011, ARXIV11091263
[8]   REGULARITY OF WEAK MINIMIZERS OF THE K-ENERGY AND APPLICATIONS TO PROPERNESS AND K-STABILITY [J].
Berman, Robert J. ;
Darvas, Tamas ;
Lu, Chinh H. .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (02) :267-289
[9]   A VARIATIONAL APPROACH TO COMPLEX MONGE-AMPERE EQUATIONS [J].
Berman, Robert J. ;
Boucksom, Sebastien ;
Guedj, Vincent ;
Zeriahi, Ahmed .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2013, (117) :179-245
[10]   A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kahler geometry [J].
Berndtsson, Bo .
INVENTIONES MATHEMATICAE, 2015, 200 (01) :149-200