Large Time Behavior of Deterministic and Stochastic 3D Convective Brinkman-Forchheimer Equations in Periodic Domains

被引:11
作者
Kinra, Kush [1 ]
Mohan, Manil T. [1 ]
机构
[1] Indian Inst Technol Roorkee IIT Roorkee, Dept Math, Haridwar Highway, Roorkee 247667, Uttarakhand, India
关键词
3D stochastic convective Brinkman-Forchheimer equations; Periodic domains; Cylindrical Wiener process; Random dynamical system; Absorbing sets; Random attractors; NAVIER-STOKES EQUATIONS; RANDOM ATTRACTOR; PRIMITIVE EQUATIONS; GLOBAL ATTRACTORS; RANDOM DYNAMICS; EXISTENCE; DRIVEN; ERGODICITY; REGULARITY; SPACES;
D O I
10.1007/s10884-021-10073-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The large time behavior of deterministic and stochastic three dimensional convective Brinkman-Forchheimer (CBF) equations partial derivative(t) u - mu Delta u + (u center dot del) u + alpha u + beta| u|(r-1)u+ del p = f, del center dot u = 0, for r = 3 ( mu, beta > 0 for r > 3 and 2 beta mu = 1 for r = 3), in periodic domains is carried out in this work. Our first goal is to prove the existence of global attractors for the 3D deterministic CBF equations. Then, we show the existence of random attractors for the 3D stochastic CBF equations perturbed by small additive smooth noise. Furthermore, we establish the upper semicontinuity of random attractors for the 3D stochastic CBF equations (stability of attractors), when the coefficient of random perturbation approaches to zero. Finally, we address the existence and uniqueness of invariant measures of 3D stochastic CBF equations.
引用
收藏
页码:2355 / 2396
页数:42
相关论文
共 63 条
  • [1] [Anonymous], 1996, Stochastics and Stochastic Reports, DOI DOI 10.1080/17442509608834083
  • [2] The Navier-Stokes problem modified by an absorption term
    Antontsev, S. N.
    de Oliveira, H. B.
    [J]. APPLICABLE ANALYSIS, 2010, 89 (12) : 1805 - 1825
  • [3] Arnold L, 1998, RANDOM DYNAMICAL SYS, DOI [10.1007/978-3-662-12878-7, DOI 10.1007/978-3-662-12878-7, 10.1007/978-3-662- 12878-7]
  • [4] Bortolan M. C., 2020, MATH SURVEYS MONOGRA
  • [5] Asymptotic behaviour of solutions to the 2D stochastic Navier-Stokes equations in unbounded domains - New developments
    Brzezniak, Z
    Li, YH
    [J]. RECENT DEVELOPMENTS IN STOCHASTIC ANALYSIS AND RELATED TOPICS, 2004, : 78 - 111
  • [6] PATHWISE GLOBAL ATTRACTORS FOR STATIONARY RANDOM DYNAMIC-SYSTEMS
    BRZEZNIAK, Z
    CAPINSKI, M
    FLANDOLI, F
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1993, 95 (01) : 87 - 102
  • [7] Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem
    Brzezniak, Z
    van Neerven, J
    [J]. STUDIA MATHEMATICA, 2000, 143 (01) : 43 - 74
  • [8] Brzezniak Z., 1996, STOCH STOCH REP, V56, P1
  • [9] Brzezniak Z., 1997, Stoch. Stoch. Rep, V61, P245
  • [10] Asymptotic compactness and absorbing sets for 2D stochastic Navier- Stokes equations on some unbounded domains
    Brzezniak, Zdzislaw
    Li, Yuhong
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (12) : 5587 - 5629