Time-varying forecast combination for factor-augmented regressions with smooth structural changes
被引:3
作者:
Chen, Qitong
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ, Coll Finance & Stat, Changsha 410006, Peoples R ChinaHunan Univ, Coll Finance & Stat, Changsha 410006, Peoples R China
Chen, Qitong
[1
]
Hong, Yongmiao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Econ & Management, Beijing 100190, Peoples R China
Chinese Acad Sci, Ctr Forecasting Sci, Beijing 100190, Peoples R China
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaHunan Univ, Coll Finance & Stat, Changsha 410006, Peoples R China
Hong, Yongmiao
[2
,3
,4
]
Li, Haiqi
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ, Coll Finance & Stat, Changsha 410006, Peoples R ChinaHunan Univ, Coll Finance & Stat, Changsha 410006, Peoples R China
Li, Haiqi
[1
]
机构:
[1] Hunan Univ, Coll Finance & Stat, Changsha 410006, Peoples R China
[2] Univ Chinese Acad Sci, Sch Econ & Management, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Ctr Forecasting Sci, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
This study proposes a time-varying forecast combination for factor-augmented (TVFCFA) regressions with smooth structural changes. First, we establish the limiting distribution of the estimators of the time-varying factor-augmented regressions. To estimate the optimal time-varying combination weights, we propose a local leave-l-out cross-validation (LLOCV) criterion that is asymptotically unbiased for the local mean squared forecast error (LMSFE). The TVFCFA method was shown to be asymptotically optimal in the sense that its LMSFE attains the infeasible lower bound. We establish the convergence rate of the selected weights and demonstrate that the TVFCFA method automatically assigns all weights to correctly specified models. Because the overfitted models have nonzero weights, the TVFCFA estimator asymptotically follows a nonstandard distribution. To obtain an asymptotic normal distribution, we propose a penalized LLOCV criterion such that the weights for the overfitted models asymptotically converge to zero. The TVFCFA estimator, with weights that minimize the penalized LLOCV, asymptotically follows a normal distribution, and the convergence rate of the weights assigned to the overfitted models is inversely proportional to the penalized factor. A Monte Carlo simulation shows that the TVFCFA method outperforms competing model averaging and selection methods that are popular in the literature. Moreover, an empirical application of the TVFCFA method to inflation forecasts demonstrates its superiority.
机构:
Arizona State Univ, Dept Econ, Tempe, AZ 85287 USA
Sogang Univ, Dept Econ, Seoul 121742, South KoreaArizona State Univ, Dept Econ, Tempe, AZ 85287 USA
Ahn, Seung C.
;
Horenstein, Alex R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Miami, Dept Econ, Coral Gables, FL 33124 USA
Inst Tecnol Autonomo Mexico, Dept Business, Mexico City 01080, DF, MexicoArizona State Univ, Dept Econ, Tempe, AZ 85287 USA
机构:
Keio Univ, Grad Sch Business Adm, Kanagawa, JapanKeio Univ, Grad Sch Business Adm, Kanagawa, Japan
Ando, Tomohiro
;
Li, Ker-Chau
论文数: 0引用数: 0
h-index: 0
机构:
Acad Sinica, Inst Stat Sci, Taipei, Taiwan
Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USAKeio Univ, Grad Sch Business Adm, Kanagawa, Japan
机构:
Tsinghua Univ, Sch Econ & Management, Beijing 100084, Peoples R China
NYU, Dept Econ, New York, NY 10012 USAColumbia Univ, Dept Econ, New York, NY 10027 USA
Bai, Jushan
;
Ng, Serena
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Econ, New York, NY 10027 USAColumbia Univ, Dept Econ, New York, NY 10027 USA
机构:
Arizona State Univ, Dept Econ, Tempe, AZ 85287 USA
Sogang Univ, Dept Econ, Seoul 121742, South KoreaArizona State Univ, Dept Econ, Tempe, AZ 85287 USA
Ahn, Seung C.
;
Horenstein, Alex R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Miami, Dept Econ, Coral Gables, FL 33124 USA
Inst Tecnol Autonomo Mexico, Dept Business, Mexico City 01080, DF, MexicoArizona State Univ, Dept Econ, Tempe, AZ 85287 USA
机构:
Keio Univ, Grad Sch Business Adm, Kanagawa, JapanKeio Univ, Grad Sch Business Adm, Kanagawa, Japan
Ando, Tomohiro
;
Li, Ker-Chau
论文数: 0引用数: 0
h-index: 0
机构:
Acad Sinica, Inst Stat Sci, Taipei, Taiwan
Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USAKeio Univ, Grad Sch Business Adm, Kanagawa, Japan
机构:
Tsinghua Univ, Sch Econ & Management, Beijing 100084, Peoples R China
NYU, Dept Econ, New York, NY 10012 USAColumbia Univ, Dept Econ, New York, NY 10027 USA
Bai, Jushan
;
Ng, Serena
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Econ, New York, NY 10027 USAColumbia Univ, Dept Econ, New York, NY 10027 USA