Monolithic Strong Coupling of Topological Surface Acoustic Wave Resonators on Lithium Niobate

被引:13
作者
Zhang, Zi-Dong [1 ]
Yu, Si-Yuan [1 ]
Xu, Haitan [2 ]
Lu, Ming-Hui [1 ]
Chen, Yan-Feng [1 ]
机构
[1] Nanjing Univ, Dept Mat Sci & Engn, Natl Lab Solid State Microstruct, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Shishan Lab, Sch Mat Sci & Intelligent Engn, Suzhou 215163, Jiangsu, Peoples R China
基金
国家重点研发计划; 中国博士后科学基金; 中国国家自然科学基金;
关键词
mechanical resonator; strong coupling; surface acoustic wave; topological insulators; PARAMETRIC AMPLIFICATION; SYSTEMS;
D O I
10.1002/adma.202312861
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Coherent phonon transfer via high-quality factor (Q) mechanical resonator strong coupling has garnered significant interest. Yet, the practical applications of these strongly coupled resonator devices are largely constrained by their vulnerability to fabrication defects. In this study, topological strong coupling of gigahertz frequency surface acoustic wave (SAW) resonators with lithium niobate is achieved. The nanoscale grooves are etched onto the lithium niobate surface to establish robust SAW topological interface states (TISs). By constructing phononic crystal (PnC) heterostructures, a strong coupling of two SAW TISs, achieving a maximum Rabi splitting of 22 MHz and frequency quality factor product fQm of approximate to 1.2 x 1013 Hz, is realized. This coupling can be tuned by adjusting geometric parameters and a distinct spectral anticrossing is experimentally observed. Furthermore, a dense wavelength division multiplexing device based on the coupling of multiple TISs is demonstrated. These findings open new avenues for the development of practical topological acoustic devices for on-chip sensing, filtering, phonon entanglement, and beyond. The strong coupling of topological surface acoustic wave resonators with a large Rabi splitting and a high-quality factor operating at gigahertz frequencies based on a single-crystal lithium niobate acoustic-electric integrated system is realized. The coupling resonators are prepared by etching nanoscale grooves on the surface of lithium niobate. Then dense wavelength division multiplexers based on multiresonator coupling are also demonstrated. image
引用
收藏
页数:9
相关论文
共 51 条
[1]   High-Q HF microelectromechanical filters [J].
Bannon, FD ;
Clark, JR ;
Nguyen, CTC .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2000, 35 (04) :512-526
[2]   Topological protection of biphoton states [J].
Blanco-Redondo, Andrea ;
Bell, Bryn ;
Oren, Dikla ;
Eggleton, Benjamin J. ;
Segev, Mordechai .
SCIENCE, 2018, 362 (6414) :568-+
[3]   Experimental realization of on-chip topological nanoelectromechanical metamaterials [J].
Cha, Jinwoong ;
Kim, Kun Woo ;
Daraio, Chiara .
NATURE, 2018, 564 (7735) :229-+
[4]  
De Alba R, 2016, NAT NANOTECHNOL, V11, P741, DOI [10.1038/nnano.2016.86, 10.1038/NNANO.2016.86]
[5]   Collective dynamics of strain-coupled nanomechanical pillar resonators [J].
Doster, J. ;
Hoenl, S. ;
Lorenz, H. ;
Paulitschke, P. ;
Weig, E. M. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[6]   Nonadiabatic Dynamics of Two Strongly Coupled Nanomechanical Resonator Modes [J].
Faust, Thomas ;
Rieger, Johannes ;
Seitner, Maximilian J. ;
Krenn, Peter ;
Kotthaus, Joerg P. ;
Weig, Eva M. .
PHYSICAL REVIEW LETTERS, 2012, 109 (03)
[7]   Phononic integrated circuitry and spin-orbit interaction of phonons [J].
Fu, Wei ;
Shen, Zhen ;
Xu, Yuntao ;
Zou, Chang-Ling ;
Cheng, Risheng ;
Han, Xu ;
Tang, Hong X. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]  
Fuhrmann DA, 2011, NAT PHOTONICS, V5, P605, DOI [10.1038/nphoton.2011.208, 10.1038/NPHOTON.2011.208]
[9]   Mass Sensing Based on Deterministic and Stochastic Responses of Elastically Coupled Nanocantilevers [J].
Gil-Santos, Eduardo ;
Ramos, Daniel ;
Jana, Anirban ;
Calleja, Montserrat ;
Raman, Arvind ;
Tamayo, Javier .
NANO LETTERS, 2009, 9 (12) :4122-4127
[10]   Fano resonance from a one-dimensional topological photonic crystal [J].
Gu, Linpeng ;
Wang, Binbin ;
Yuan, Qingchen ;
Fang, Liang ;
Zhao, Qiang ;
Gan, Xuetao ;
Zhao, Jianlin .
APL PHOTONICS, 2021, 6 (08)